Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ordered pair
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Variants==== The above Kuratowski definition of the ordered pair is "adequate" in that it satisfies the characteristic property that an ordered pair must satisfy, namely that <math>(a,b) = (x,y) \leftrightarrow (a=x) \land (b=y)</math>. In particular, it adequately expresses 'order', in that <math>(a,b) = (b,a)</math> is false unless <math>b = a</math>. There are other definitions, of similar or lesser complexity, that are equally adequate: * <math>( a, b )_{\text{reverse}} := \{ \{ b \}, \{a, b\}\};</math> * <math>( a, b )_{\text{short}} := \{ a, \{a, b\}\};</math> * <math>( a, b )_{\text{01}} := \{\{0, a \}, \{1, b \}\}.</math><ref>This differs from Hausdorff's definition in not requiring the two elements 0 and 1 to be distinct from ''a'' and ''b''.</ref> The '''reverse''' definition is merely a trivial variant of the Kuratowski definition, and as such is of no independent interest. The definition '''short''' is so-called because it requires two rather than three pairs of [[braces (punctuation)|braces]]. Proving that '''short''' satisfies the characteristic property requires the [[Zermelo–Fraenkel set theory]] [[axiom of regularity]].<ref>Tourlakis, George (2003) ''Lectures in Logic and Set Theory. Vol. 2: Set Theory''. Cambridge Univ. Press. Proposition III.10.1.</ref> Moreover, if one uses [[Set-theoretic definition of natural numbers#Definition as von Neumann ordinals|von Neumann's set-theoretic construction of the natural numbers]], then 2 is defined as the set {0, 1} = {0, {0}}, which is indistinguishable from the pair (0, 0)<sub>short</sub>. Yet another disadvantage of the '''short''' pair is the fact that, even if ''a'' and ''b'' are of the same type, the elements of the '''short''' pair are not. (However, if ''a'' = ''b'' then the '''short''' version keeps having cardinality 2, which is something one might expect of any "pair", including any "ordered pair".)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)