Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Paracompact space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Relationship with compactness == There is a similarity between the definitions of [[compact space|compactness]] and paracompactness: For paracompactness, "subcover" is replaced by "open refinement" and "finite" by is replaced by "locally finite". Both of these changes are significant: if we take the definition of paracompact and change "open refinement" back to "subcover", or "locally finite" back to "finite", we end up with the compact spaces in both cases. Paracompactness has little to do with the notion of compactness, but rather more to do with breaking up topological space entities into manageable pieces. === Comparison of properties with compactness === Paracompactness is similar to compactness in the following respects: * Every closed subset of a paracompact space is paracompact. * Every paracompact [[Hausdorff space]] is [[normal space|normal]].{{sfn | Dugundji | 1966 | pp=165, Theorem 2.2}} It is different in these respects: * A paracompact subset of a Hausdorff space need not be closed. In fact, for metric spaces, all subsets are paracompact. * A product of paracompact spaces need not be paracompact. The [[Sorgenfrey plane|square of the real line '''R''' in the lower limit topology]] is a classical example for this.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)