Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Parallel curve
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Normal fans=== As described [[#Parallel curve of a parametrically given curve|above]], the parametric representation of a parallel curve, <math>\vec x_d(t)</math>, to a given curver, <math>\vec x(t)</math>, with distance <math>|d|</math> is: :<math>\vec x_d(t) = \vec x(t) + d\vec n(t)</math> with the unit normal <math>\vec n(t)</math>. At a sharp corner (<math>t = t_c</math>), the normal to <math>\vec x(t_c)</math> given by <math>\vec n(t_c)</math> is discontinuous, meaning the [[one-sided limit]] of the normal from the left <math>\vec n(t_c^-)</math> is unequal to the limit from the right <math>\vec n(t_c^+)</math>. Mathematically, :<math>\vec n(t_c^-) = \lim_{t \to t_c^-}\vec n(t) \ne \vec n(t_c^+) = \lim_{t \to t_c^+}\vec n(t)</math>. [[File:Normal fan for defining parallel curves.png|thumb|Normal fan for defining parallel curves around a sharp corner]] However, we can define a normal fan<ref name="Brechner1990"/> <math>\vec n_f(\alpha)</math> that provides an [[Interpolation|interpolant]] between <math>\vec n(t_c^-)</math> and <math>\vec n(t_c^+)</math>, and use <math>\vec n_f(\alpha)</math> in place of <math>\vec n(t_c)</math> at the sharp corner: :<math>\vec n_f(\alpha) = \frac{(1 - \alpha)\vec n(t_c^-) + \alpha\vec n(t_c^+)}{\lVert (1 - \alpha)\vec n(t_c^-) + \alpha\vec n(t_c^+) \rVert},\quad</math>where <math>0 < \alpha < 1</math>. The resulting definition of the parallel curve <math>\vec x_d(t)</math> provides the desired behavior: :<math>\vec x_d(t) = \begin{cases} \vec x(t) + d\vec n(t), & \text{if }t < t_c\text{ or }t > t_c \\ \vec x(t_c) + d\vec n_f(\alpha), & \text{if }t = t_c\text{ where }0 < \alpha < 1 \end{cases}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)