Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pisot–Vijayaraghavan number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Small Pisot numbers== All Pisot numbers that do not exceed the [[golden ratio]] ''φ'' have been determined by Dufresnoy and Pisot. The table below lists ten smallest Pisot numbers in increasing order.<ref>{{citation | last1 = Dufresnoy | first1 = J. | last2 = Pisot | first2 = Ch. | journal = Annales Scientifiques de l'École Normale Supérieure | language = French | mr = 0072902 | pages = 69–92 | title = Etude de certaines fonctions méromorphes bornées sur le cercle unité. Application à un ensemble fermé d'entiers algébriques | url = http://www.numdam.org/item?id=ASENS_1955_3_72_1_69_0 | volume = 72 | year = 1955| doi = 10.24033/asens.1030 }}. The smallest of these numbers are listed in numerical order on p. 92.</ref> <div class="overflowbugx" style="overflow-x:auto;"> {| class="wikitable" |- ! !! Value !! Root of... !! Root of... |- | 1 || {{val|1.32471795724474602596|end=...}} {{OEIS2C|A060006}} ([[plastic ratio]]) || <math>x(x^2-x-1)+(x^2-1)</math> || <math>x^3-x-1</math> |- | 2 || {{val|1.38027756909761411567|end=...}} {{OEIS2C|A086106}} || <math>x^2(x^2-x-1)+(x^2-1)</math> ||<math>x^4-x^3-1</math> |- | 3 || {{val|1.44326879127037310762|end=...}} {{OEIS2C|A228777}} || <math>x^3(x^2-x-1)+(x^2-1)</math> ||<math>x^5-x^4-x^3+x^2-1</math> |- | 4 || {{val|1.46557123187676802665|end=...}} {{OEIS2C|A092526}} ([[supergolden ratio]]) || <math>x^3(x^2-x-1)+1</math> ||<math>x^3-x^2-1</math> |- | 5 || {{val|1.50159480353908736637|end=...}} {{OEIS2C|A293508}} || <math>x^4(x^2-x-1)+(x^2-1)</math> ||<math>x^6-x^5-x^4+x^2-1</math> |- | 6 || {{val|1.53415774491426691543|end=...}} {{OEIS2C|A293509}} || <math>x^4(x^2-x-1)+1</math> ||<math>x^5-x^3-x^2-x-1</math> |- | 7 || {{val|1.54521564973275524325|end=...}} {{OEIS2C|A293557}} || <math>x^5(x^2-x-1)+(x^2-1)</math> ||<math>x^7-x^6-x^5+x^2-1</math> |- | 8 || {{val|1.56175206772029729470|end=...}} {{OEIS2C|A374002}} || <math>x^3(x^3-2x^2+x-1)+(x-1)(x^2+1)</math> ||<math>x^6-2x^5+x^4-x^2+x-1</math> |- | 9 || {{val|1.57014731219605436291|end=...}} {{OEIS2C|A293506}} || <math>x^5(x^2-x-1)+1</math> ||<math>x^5-x^4-x^2-1</math> |- | 10 || {{val|1.57367896839351698877|end=...}} {{OEIS2C|A374003}} || <math>x^6(x^2-x-1)+(x^2-1)</math> ||<math>x^8-x^7-x^6+x^2-1</math> |} </div> Since these PV numbers are less than 2, they are all units: their minimal polynomials end in 1 or −1. <!-- this needs to be put in proper place or removed Every real algebraic number field contains a PV number that generates this field. In real quadratic and cubic fields it is not hard to find a unit that is a PV number. --> The polynomials in this table,<ref name=":0">Bertin et al., p. 133.</ref> with the exception of : <math>x^6 - 2x^5 + x^4 - x^2 + x - 1,</math> are factors of either :<math>x^n(x^2 - x - 1) + 1</math> or :<math>x^n(x^2 - x - 1) + (x^2 - 1).</math> The first polynomial is divisible by ''x''<sup>2</sup> − 1 when ''n'' is odd and by ''x'' − 1 when ''n'' is [[parity (mathematics)|even]]. It has one other real zero, which is a PV number. Dividing either polynomial by ''x''<sup>''n''</sup> gives expressions that approach ''x''<sup>2</sup> − ''x'' − 1 as ''n'' grows very large and have zeros that [[limit of a sequence|converge]] to ''φ''. A complementary pair of polynomials, :<math>x^n(x^2 - x - 1) - 1</math> and :<math> x^n(x^2-x-1) - (x^2-1)\,</math> yields Pisot numbers that approach φ from above. Two-dimensional [[turbulence]] modeling using [[logarithmic spiral]] chains with [[self-similarity]] defined by a constant scaling factor can be reproduced with some small Pisot numbers.<ref>{{cite journal |url=https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.043113 |author1=Ö. D. Gürcan |author2= Shaokang Xu|author3=P. Morel |title=Spiral chain models of two-dimensional turbulence |journal=Physical Review E |volume=100 |date=2019 |issue=4 |page=043113 |doi=10.1103/PhysRevE.100.043113 |pmid=31770954 |arxiv=1903.09494 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)