Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Plücker coordinates
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bijection between lines and Klein quadric== === Plane equations === If the point <math>\mathbf z = (z_0:z_1:z_2:z_3)</math> lies on {{mvar|L}}, then the columns of : <math> \begin{bmatrix} x_0 & y_0 & z_0 \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} </math> are [[linearly dependent]], so that the rank of this larger matrix is still 2. This implies that all 3×3 submatrices have determinant zero, generating four (4 choose 3) plane equations, such as : <math> \begin{align} 0 & = \begin{vmatrix} x_0 & y_0 & z_0 \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} \\[5pt] & = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} z_0 - \begin{vmatrix} x_0 & y_0 \\ x_2 & y_2 \end{vmatrix} z_1 + \begin{vmatrix} x_0 & y_0 \\ x_1 & y_1 \end{vmatrix} z_2 \\[5pt] & = p_{12} z_0 - p_{02} z_1 + p_{01} z_2 . \\[5pt] & = p^{03} z_0 + p^{13} z_1 + p^{23} z_2 . \end{align} </math> The four possible planes obtained are as follows. : <math> \begin{matrix} 0 & = & {}+ p_{12} z_0 & {}- p_{02} z_1 & {}+ p_{01} z_2 & \\ 0 & = & {}- p_{31} z_0 & {}- p_{03} z_1 & & {}+ p_{01} z_3 \\ 0 & = & {}+p_{23} z_0 & & {}- p_{03} z_2 & {}+ p_{02} z_3 \\ 0 & = & & {}+p_{23} z_1 & {}+ p_{31} z_2 & {}+ p_{12} z_3 \end{matrix} </math> Using dual coordinates, and letting {{math|(''a''{{sup|0}} : ''a''{{sup|1}} : ''a''{{sup|2}} : ''a''{{sup|3}})}} be the line coefficients, each of these is simply {{math|1=''a<sup>i</sup>'' = ''p<sup>ij</sup>''}}, or : <math> 0 = \sum_{i=0}^3 p^{ij} z_i , \qquad j = 0,\ldots,3 . </math> Each Plücker coordinate appears in two of the four equations, each time multiplying a different variable; and as at least one of the coordinates is nonzero, we are guaranteed non-vacuous equations for two distinct planes intersecting in {{mvar|L}}. Thus the Plücker coordinates of a line determine that line uniquely, and the map α is an [[Injective function|injection]]. === Quadratic relation === The image of {{math|α}} is not the complete set of points in {{tmath|\mathbb P^5}}; the Plücker coordinates of a line {{mvar|L}} satisfy the quadratic Plücker relation : <math> \begin{align} 0 & = p_{01}p^{01}+p_{02}p^{02}+p_{03}p^{03} \\ & = p_{01}p_{23}+p_{02}p_{31}+p_{03}p_{12}. \end{align} </math> For proof, write this homogeneous polynomial as determinants and use [[Laplace expansion]] (in reverse). : <math> \begin{align} 0 & = \begin{vmatrix}x_0&y_0\\x_1&y_1\end{vmatrix}\begin{vmatrix}x_2&y_2\\x_3&y_3\end{vmatrix}+ \begin{vmatrix}x_0&y_0\\x_2&y_2\end{vmatrix}\begin{vmatrix}x_3&y_3\\x_1&y_1\end{vmatrix}+ \begin{vmatrix}x_0&y_0\\x_3&y_3\end{vmatrix}\begin{vmatrix}x_1&y_1\\x_2&y_2\end{vmatrix} \\[5pt] & = (x_0 y_1-y_0 x_1)\begin{vmatrix}x_2&y_2\\x_3&y_3\end{vmatrix}- (x_0 y_2-y_0 x_2)\begin{vmatrix}x_1&y_1\\x_3&y_3\end{vmatrix}+ (x_0 y_3-y_0 x_3)\begin{vmatrix}x_1&y_1\\x_2&y_2\end{vmatrix} \\[5pt] & = x_0 \left(y_1\begin{vmatrix}x_2&y_2\\x_3&y_3\end{vmatrix}- y_2\begin{vmatrix}x_1&y_1\\x_3&y_3\end{vmatrix}+ y_3\begin{vmatrix}x_1&y_1\\x_2&y_2\end{vmatrix}\right) -y_0 \left(x_1\begin{vmatrix}x_2&y_2\\x_3&y_3\end{vmatrix}- x_2\begin{vmatrix}x_1&y_1\\x_3&y_3\end{vmatrix}+ x_3\begin{vmatrix}x_1&y_1\\x_2&y_2\end{vmatrix}\right) \\[5pt] & = x_0 \begin{vmatrix}x_1&y_1&y_1\\x_2&y_2&y_2\\x_3&y_3&y_3\end{vmatrix} -y_0 \begin{vmatrix}x_1&x_1&y_1\\x_2&x_2&y_2\\x_3&x_3&y_3\end{vmatrix} \end{align} </math> Since both 3×3 determinants have duplicate columns, the right hand side is identically zero. Another proof may be done like this: Since vector : <math> d = \left( p_{01}, p_{02}, p_{03} \right) </math> is perpendicular to vector : <math> m = \left( p_{23}, p_{31}, p_{12} \right) </math> (see above), the scalar product of {{mvar|d}} and {{mvar|m}} must be zero. q.e.d. === Point equations === Letting {{math|(''x''{{sub|0}} : ''x''{{sub|1}} : ''x''{{sub|2}} : ''x''{{sub|3}})}} be the point coordinates, four possible points on a line each have coordinates {{math|1=''x<sub>i</sub>'' = ''p<sub>ij</sub>''}}, for {{math|1=''j'' = 0, 1, 2, 3}}. Some of these possible points may be inadmissible because all coordinates are zero, but since at least one Plücker coordinate is nonzero, at least two distinct points are guaranteed. === Bijectivity === If <math>(q_{01}:q_{02}:q_{03}:q_{23}:q_{31}:q_{12})</math> are the homogeneous coordinates of a point in {{tmath|\mathbb P^5}}, without loss of generality assume that {{math|''q''<sub>01</sub>}} is nonzero. Then the matrix : <math> M = \begin{bmatrix} q_{01} & 0 \\ 0 & q_{01} \\ -q_{12} & q_{02} \\ q_{31} & q_{03} \end{bmatrix} </math> has rank 2, and so its columns are distinct points defining a line {{mvar|L}}. When the {{tmath|\mathbb P^5}} coordinates, {{mvar|q<sub>ij</sub>}}, satisfy the quadratic Plücker relation, they are the Plücker coordinates of {{mvar|L}}. To see this, first normalize {{math|''q''<sub>01</sub>}} to 1. Then we immediately have that for the Plücker coordinates computed from {{mvar|M}}, {{math|1=''p<sub>ij</sub>'' = ''q<sub>ij</sub>''}}, except for : <math> p_{23} = - q_{03} q_{12} - q_{02} q_{31} . </math> But if the {{mvar|q<sub>ij</sub>}} satisfy the Plücker relation :<math>q_{23} + q_{02}q_{31} + q_{03}q_{12} = 0,</math> then {{math|1=''p''<sub>23</sub> = ''q''<sub>23</sub>}}, completing the set of identities. Consequently, {{math|α}} is a [[surjection]] onto the [[algebraic variety]] consisting of the set of zeros of the quadratic polynomial : <math> p_{01}p_{23}+p_{02}p_{31}+p_{03}p_{12} . </math> And since {{math|α}} is also an injection, the lines in {{tmath|\mathbb P^3}} are thus in [[bijection|bijective]] correspondence with the points of this [[quadric]] in {{tmath|\mathbb P^5}}, called the Plücker quadric or [[Klein quadric]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)