Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Power series
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Addition and subtraction === When two functions ''f'' and ''g'' are decomposed into power series around the same center ''c'', the power series of the sum or difference of the functions can be obtained by termwise addition and subtraction. That is, if <math display="block">f(x) = \sum_{n=0}^\infty a_n (x - c)^n</math> and <math display="block">g(x) = \sum_{n=0}^\infty b_n (x - c)^n</math> then <math display="block">f(x) \pm g(x) = \sum_{n=0}^\infty (a_n \pm b_n) (x - c)^n.</math> The sum of two power series will have a radius of convergence of at least the smaller of the two radii of convergence of the two series,<ref>Erwin Kreyszig, Advanced Engineering Mathematics, 8th ed, page 747</ref> but possibly larger than either of the two. For instance it is not true that if two power series <math display="inline">\sum_{n=0}^\infty a_n x^n</math> and <math display="inline">\sum_{n=0}^\infty b_n x^n</math> have the same radius of convergence, then <math display="inline">\sum_{n=0}^\infty \left(a_n + b_n\right) x^n</math> also has this radius of convergence: if <math display="inline">a_n = (-1)^n</math> and <math display="inline">b_n = (-1)^{n+1} \left(1 - \frac{1}{3^n}\right)</math>, for instance, then both series have the same radius of convergence of 1, but the series <math display="inline">\sum_{n=0}^\infty \left(a_n + b_n\right) x^n = \sum_{n=0}^\infty \frac{(-1)^n}{3^n} x^n</math> has a radius of convergence of 3.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)