Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Preorder
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Graph theory=== * The [[reachability]] relationship in any [[directed graph]] (possibly containing cycles) gives rise to a preorder, where <math>x \lesssim y</math> in the preorder if and only if there is a path from ''x'' to ''y'' in the directed graph. Conversely, every preorder is the reachability relationship of a directed graph (for instance, the graph that has an edge from ''x'' to ''y'' for every pair {{nowrap|(''x'', ''y'')}} with <math>x \lesssim y</math>). However, many different graphs may have the same reachability preorder as each other. In the same way, reachability of [[directed acyclic graph]]s, directed graphs with no cycles, gives rise to [[partially ordered set]]s (preorders satisfying an additional antisymmetry property). * The [[graph-minor]] relation is also a preorder.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)