Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Primitive polynomial (field theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Primitive trinomials== A useful class of primitive polynomials is the primitive trinomials, those having only three nonzero terms: {{nowrap|''x<sup>r</sup>'' + ''x<sup>k</sup>'' + 1}}. Their simplicity makes for particularly small and fast [[linear-feedback shift register]]s.<ref>{{Cite book |last=Gentle |first=James E. |url=https://www.worldcat.org/oclc/51534945 |title=Random number generation and Monte Carlo methods |date=2003 |publisher=Springer |isbn=0-387-00178-6 |edition=2 |location=New York |pages=39 |oclc=51534945}}</ref> A number of results give techniques for locating and testing primitiveness of trinomials.<ref>{{Cite journal |last1=Zierler |first1=Neal |last2=Brillhart |first2=John |date=December 1968 |title=On primitive trinomials (Mod 2) |journal=Information and Control |language=en |volume=13 |issue=6 |pages=541, 548, 553 |doi=10.1016/S0019-9958(68)90973-X |doi-access= }}</ref> For polynomials over GF(2), where {{nowrap|2<sup>''r''</sup> β 1}} is a [[Mersenne prime]], a polynomial of degree ''r'' is primitive if and only if it is irreducible. (Given an irreducible polynomial, it is ''not'' primitive only if the period of ''x'' is a non-trivial factor of {{nowrap|2<sup>''r''</sup> β 1}}. Primes have no non-trivial factors.) Although the [[Mersenne Twister]] pseudo-random number generator does not use a trinomial, it does take advantage of this. [[Richard Brent (scientist)|Richard Brent]] has been tabulating primitive trinomials of this form, such as {{nowrap|''x''<sup>74207281</sup> + ''x''<sup>30684570</sup> + 1}}.<ref>{{cite web |url=https://maths-people.anu.edu.au/~brent/trinom.html |title=Search for Primitive Trinomials (mod 2) |first1=Richard P. |last1=Brent |authorlink1=Richard P. Brent |date=4 April 2016 |access-date=25 May 2024}}</ref><ref>{{cite arXiv |title=Twelve new primitive binary trinomials |first1=Richard P. |last1=Brent |authorlink1=Richard P. Brent |first2=Paul |last2=Zimmermann |authorlink2=Paul Zimmermann (mathematician) |eprint=1605.09213 |class=math.NT |date=24 May 2016 <!-- unsupported parameter |url=https://maths-people.anu.edu.au/~brent/pd/rpb266.pdf -->}}</ref> This can be used to create a pseudo-random number generator of the huge period {{nowrap|2<sup>74207281</sup> β 1}} β {{val|3|e=22338617}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)