Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Primitive root modulo n
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Order of magnitude of primitive roots== The least primitive root {{mvar|g{{sub|p}}}} modulo {{mvar|p}} (in the range 1, 2, ..., {{nowrap|{{mvar|p}} β 1)}} is generally small. ===Upper bounds=== Burgess (1962) proved<ref name="Ribenboim, p.24"/><ref>{{Cite journal |last=Burgess |first=D. A. |date=1962 |title=On Character Sums and Primitive Roots β |url=http://doi.wiley.com/10.1112/plms/s3-12.1.179 |journal=[[Proceedings of the London Mathematical Society]] |language=en |volume=s3-12 |issue=1 |pages=179β192 |doi=10.1112/plms/s3-12.1.179}}</ref> that for every ''Ξ΅'' > 0 there is a {{mvar|C}} such that <math>g_p \leq C\,p^{\frac{1}{4}+\varepsilon}.</math> [[Emil Grosswald|Grosswald]] (1981) proved<ref name="Ribenboim, p.24"/><ref>{{Cite journal |last=Grosswald |first=E. |date=1981 |title=On Burgess' Bound for Primitive Roots Modulo Primes and an Application to Ξ(p) |url=https://www.jstor.org/stable/2374229 |journal=[[American Journal of Mathematics]] |volume=103 |issue=6 |pages=1171β1183 |doi=10.2307/2374229 |jstor=2374229 |issn=0002-9327}}</ref> that if <math>p > e^{e^{24}} \approx 10^{11504079571}</math>, then <math>g_p < p^{0.499}.</math> [[Victor Shoup|Shoup]] (1990, 1992) proved,<ref>{{Harvnb|Bach|Shallit|1996|p=254}}.</ref> assuming the [[generalized Riemann hypothesis]], that {{nowrap|{{mvar|g{{sub|p}}}} {{=}} O(log<sup>6</sup> {{mvar|p}}).}} ===Lower bounds=== Fridlander (1949) and SaliΓ© (1950) proved<ref name="Ribenboim, p.24"/> that there is a positive constant {{mvar|C}} such that for infinitely many primes {{nowrap|{{mvar|g{{sub|p}}}} > {{mvar|C}} log {{mvar|p}}.}} It can be proved<ref name="Ribenboim, p.24"/> in an elementary manner that for any positive integer {{mvar|M}} there are infinitely many primes such that {{mvar|M}} < {{mvar|g{{sub|p}}}} < {{nowrap|{{mvar|p}} β {{mvar|M}}.}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)