Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Probability density function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Families of densities == It is common for probability density functions (and [[probability mass function]]s) to be parametrized—that is, to be characterized by unspecified [[parameter]]s. For example, the [[normal distribution]] is parametrized in terms of the [[mean]] and the [[variance]], denoted by <math>\mu</math> and <math>\sigma^2</math> respectively, giving the family of densities <math display="block"> f(x;\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{ -\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2 }. </math> Different values of the parameters describe different distributions of different [[random variable]]s on the same [[sample space]] (the same set of all possible values of the variable); this sample space is the domain of the family of random variables that this family of distributions describes. A given set of parameters describes a single distribution within the family sharing the functional form of the density. From the perspective of a given distribution, the parameters are constants, and terms in a density function that contain only parameters, but not variables, are part of the [[normalization factor]] of a distribution (the multiplicative factor that ensures that the area under the density—the probability of ''something'' in the domain occurring— equals 1). This normalization factor is outside the [[kernel (statistics)|kernel]] of the distribution. Since the parameters are constants, reparametrizing a density in terms of different parameters to give a characterization of a different random variable in the family, means simply substituting the new parameter values into the formula in place of the old ones.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)