Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Propionic acid
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Biology== Propionic acid is produced biologically as its coenzyme A ester, [[propionyl-CoA]], from the [[metabolism|metabolic]] breakdown of fatty acids containing [[odd number]]s of [[carbon]] atoms, and also from the breakdown of some [[amino acid]]s. Bacteria of the genus ''[[Propionibacterium]]'' produce propionic acid as the end-product of their [[anaerobic respiration|anaerobic]] metabolism. This class of bacteria is commonly found in the stomachs of [[ruminant]]s and the [[Cutibacterium acnes|sweat glands of humans]], and their activity is partially responsible for the odor of [[Emmental cheese]], [[Swiss cheese (North America)|American "Swiss cheese"]] and [[sweat]]. The metabolism of propionic acid begins with its conversion to propionyl [[coenzyme A]], the usual first step in the metabolism of [[carboxylic acid]]s. Since propionic acid has three carbons, propionyl-CoA cannot directly enter either [[beta oxidation]] or the [[citric acid cycle]]s. In most [[vertebrate]]s, propionyl-CoA is [[carboxylation|carboxylated]] to <small>D</small>-[[methylmalonyl-CoA]], which is [[Isomerisation|isomerised]] to <small>L</small>-methylmalonyl-CoA. A [[vitamin B12|vitamin B<sub>12</sub>]]-dependent enzyme catalyzes rearrangement of <small>L</small>-methylmalonyl-CoA to [[succinyl-CoA]], which is an intermediate of the citric acid cycle and can be readily incorporated there.<ref>{{Cite book|last=Lehninger, Albert L.|url=https://www.worldcat.org/oclc/55476414|title=Lehninger principles of biochemistry|date=2005|publisher=W.H. Freeman|others=Nelson, David L. (David Lee), 1942-, Cox, Michael M.|isbn=0-7167-4339-6|edition=Fourth|location=New York|oclc=55476414}}</ref> Propionic acid serves as a substrate for [[hepatic]] [[gluconeogenesis]] via conversion to succinyl-CoA.<ref>{{cite journal|last1=Aschenbach|first1=JR|last2=Kristensen|first2=NB|last3=Donkin|first3=SS|last4=Hammon|first4=HM|last5=Penner|first5=GB|date=December 2010|title=Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough.|journal=IUBMB Life|volume=62|issue=12|pages=869–77|doi=10.1002/iub.400|pmid=21171012|doi-access=free|s2cid=21117076}}</ref><ref>{{Cite journal|last1=Perry|first1=Rachel J.|last2=Borders|first2=Candace B.|last3=Cline|first3=Gary W.|last4=Zhang|first4=Xian-Man|last5=Alves|first5=Tiago C.|last6=Petersen|first6=Kitt Falk|last7=Rothman|first7=Douglas L.|last8=Kibbey|first8=Richard G.|last9=Shulman|first9=Gerald I.|date=21 March 2016|title=Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism|journal=Journal of Biological Chemistry|volume=291|issue=23|pages=12161–12170|doi=10.1074/jbc.m116.720631|pmid=27002151|pmc=4933266|issn=0021-9258|doi-access=free}}</ref> Additionally, [[Exogeny|exogenous]] propionic acid administration results in more [[Endogeny (biology)|endogenous]] glucose production than can be accounted for by gluconeogenic conversion alone.<ref>{{Cite journal|last=Ringer|first=A. I.|date=2 August 1912|title=The Quantitative Conversion of Propionic Acid into Glucose|url=https://www.jbc.org/content/12/3/511.citation|journal=Journal of Biological Chemistry|volume=12|pages=511–515|doi=10.1016/S0021-9258(18)88686-0|doi-access=free}}</ref> Exogenous propionic acid may [[upregulate]] endogenous glucose production via increases in [[norepinephrine]] and [[glucagon]], suggesting that chronic ingestion of propionic acid may have adverse metabolic consequences.<ref>{{Cite journal|last1=Tirosh|first1=Amir|last2=Calay|first2=Ediz S.|last3=Tuncman|first3=Gurol|last4=Claiborn|first4=Kathryn C.|last5=Inouye|first5=Karen E.|last6=Eguchi|first6=Kosei|last7=Alcala|first7=Michael|last8=Rathaus|first8=Moran|last9=Hollander|first9=Kenneth S.|last10=Ron|first10=Idit|last11=Livne|first11=Rinat|date=24 April 2019|title=The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans|journal=Science Translational Medicine|volume=11|issue=489|pages=eaav0120|doi=10.1126/scitranslmed.aav0120|pmid=31019023|issn=1946-6234|doi-access=free}}</ref> In [[propionic acidemia]], a rare inherited genetic disorder, propionate acts as a metabolic toxin in liver cells by accumulating in mitochondria as propionyl-CoA and its derivative, methylcitrate, two tricarboxylic acid cycle inhibitors. Propanoate is metabolized oxidatively by [[glia]], which suggests astrocytic vulnerability in propionic acidemia when intramitochondrial propionyl-CoA may accumulate. Propionic acidemia may alter both neuronal and glial gene expression by affecting histone acetylation.<ref name="macfabe">{{cite journal |author1=D. F. MacFabe |author2=D. P. Cain |author3=K. Rodriguez-Capote |author4=A. E. Franklin |author5=J. E. Hoffman |author6=F. Boon |author7=A. R. Taylor |author8=M. Kavaliers |author9=K.-P. Ossenkopp | journal = Behavioural Brain Research | title = Neurobiological effects of intraventricular propionic acid in rats: Possible role of short-chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders | year = 2007 | volume = 176 | issue = 1 | pages = 149–169 | doi = 10.1016/j.bbr.2006.07.025 |pmid=16950524 |s2cid=3054752 }}</ref><ref>{{cite journal |author1=N. H. T. Nguyen |author2=C. Morland |author3=S. Villa Gonzalez |author4=F. Rise |author5=J. Storm-Mathisen |author6=V. Gundersen |author7=B. Hassel | journal = Journal of Neurochemistry | title = Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic acidemia | year = 2007 | volume = 101 | pmid = 17286595 | issue = 3 | pages = 806–814 | doi = 10.1111/j.1471-4159.2006.04397.x |s2cid=514557 |doi-access=free }}</ref> When propionic acid is infused directly into rodents' brains, it produces reversible behavior (e.g., [[hyperactivity]], [[dystonia]], social impairment, [[perseveration]]) and brain changes (e.g., innate neuroinflammation, glutathione depletion) that may be used as a means to model [[autism]] in rats.<ref name="macfabe" /> ===Human occurrence=== The human skin is host of several species of ''Propionibacteria''. The most notable one is the ''[[Cutibacterium acnes]]'' (formerly known as ''Propionibacterium acnes''), which lives mainly in the [[sebaceous gland]]s of the skin and is one of the principal causes of [[acne]].<ref>{{cite journal |doi=10.1016/j.clindermatol.2004.03.005 |title=Acne and propionibacterium acnes |year=2004 |last1=Bojar |first1=Richard A. |last2=Holland |first2=Keith T. |journal=Clinics in Dermatology |volume=22 |issue=5 |pages=375–379 |pmid=15556721 }}</ref> Propionate is observed to be among the most common [[short-chain fatty acid]]s produced in the [[large intestine]] of humans by [[gut microbiome|gut microbiota]] in response to indigestible carbohydrates ([[dietary fiber]]) in the diet.<ref>{{cite journal |last1=Cani |first1=Patrice D. |last2=Knauf |first2=Claude |title=How gut microbes talk to organs: The role of endocrine and nervous routes |journal=Molecular Metabolism |date=27 May 2016 |volume=5 |issue=9 |pages=743–752 |doi=10.1016/j.molmet.2016.05.011 |pmid=27617197 |pmc=5004142 }}</ref><ref name = metab>{{cite journal|last1=den Besten |first1=G |last2=van Eunen |first2=K |last3=Groen |first3=AK |last4=Venema |first4=K|last5=Reijngoud|first5=DJ|last6=Bakker|first6=BM|title=The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.|journal=Journal of Lipid Research|date=September 2013|volume=54|issue=9|pages=2325–40|doi=10.1194/jlr.R036012 |doi-access=free |pmid=23821742|pmc=3735932}}</ref> The role of the gut microbiota and their metabolites, including propionate, in mediating brain function has been reviewed.<ref>{{cite journal |doi=10.1038/mp.2016.50 |doi-access=free |title=From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways |year=2016 |last1=Rogers |first1=G. B. |last2=Keating |first2=D. J. |last3=Young |first3=R. L. |last4=Wong |first4=M-L |last5=Licinio |first5=J. |last6=Wesselingh |first6=S. |journal=Molecular Psychiatry |volume=21 |issue=6 |pages=738–748 |pmid=27090305 |pmc=4879184 |s2cid=18589882 }}</ref> A study in mice suggests that propionate is produced by the bacteria of the genus ''[[Bacteroides]]'' in the gut, and that it offers some protection against ''[[Salmonella]]'' there.<ref>{{cite journal |doi=10.1016/j.chom.2018.07.002 |title=A Gut Commensal-Produced Metabolite Mediates Colonization Resistance to Salmonella Infection |year=2018 |last1=Jacobson |first1=Amanda |last2=Lam |first2=Lilian |last3=Rajendram |first3=Manohary |last4=Tamburini |first4=Fiona |last5=Honeycutt |first5=Jared |last6=Pham |first6=Trung |last7=Van Treuren |first7=Will |last8=Pruss |first8=Kali |last9=Stabler |first9=Stephen Russell |last10=Lugo |first10=Kyler |last11=Bouley |first11=Donna M. |last12=Vilches-Moure |first12=Jose G. |last13=Smith |first13=Mark |last14=Sonnenburg |first14=Justin L. |last15=Bhatt |first15=Ami S. |last16=Huang |first16=Kerwyn Casey |last17=Monack |first17=Denise |journal=Cell Host & Microbe |volume=24 |issue=2 |pages=296–307.e7 |pmid=30057174 |pmc=6223613 }}</ref> Another study finds that fatty acid propionate can calm the immune cells that drive up blood pressure, thereby protecting the body from damaging effects of high blood pressure.<ref>{{cite journal |doi=10.1161/CIRCULATIONAHA.118.036652 |title=Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage |year=2019 |last1=Bartolomaeus |first1=Hendrik |last2=Balogh |first2=András |last3=Yakoub |first3=Mina |last4=Homann |first4=Susanne |last5=Markó |first5=Lajos |last6=Höges |first6=Sascha |last7=Tsvetkov |first7=Dmitry |last8=Krannich |first8=Alexander |last9=Wundersitz |first9=Sebastian |last10=Avery |first10=Ellen G. |last11=Haase |first11=Nadine |last12=Kräker |first12=Kristin |last13=Hering |first13=Lydia |last14=Maase |first14=Martina |last15=Kusche-Vihrog |first15=Kristina |last16=Grandoch |first16=Maria |last17=Fielitz |first17=Jens |last18=Kempa |first18=Stefan |last19=Gollasch |first19=Maik |last20=Zhumadilov |first20=Zhaxybay |last21=Kozhakhmetov |first21=Samat |last22=Kushugulova |first22=Almagul |last23=Eckardt |first23=Kai-Uwe |last24=Dechend |first24=Ralf |last25=Rump |first25=Lars Christian |last26=Forslund |first26=Sofia K. |last27=Müller |first27=Dominik N. |last28=Stegbauer |first28=Johannes |last29=Wilck |first29=Nicola |journal=Circulation |volume=139 |issue=11 |pages=1407–1421 |pmid=30586752 |pmc=6416008 }}</ref> === Bacteriology === The Bacteria species ''[[Coprothermobacter platensis]]'' produces propionate when fermenting gelatin.<ref>{{Cite journal|last1=Etchebehere|first1=C.|last2=Pavan|first2=M. E.|last3=Zorzópulos|first3=J.|last4=Soubes|first4=M.|last5=Muxí|first5=L.|date=October 1998|title=Coprothermobacter platensis sp. nov., a new anaerobic proteolytic thermophilic bacterium isolated from an anaerobic mesophilic sludge|journal=International Journal of Systematic Bacteriology|volume=48 Pt 4|issue=4|pages=1297–1304|doi=10.1099/00207713-48-4-1297|issn=0020-7713|pmid=9828430|doi-access=free}}</ref> ''[[Prevotella brevis]]'' and ''Prevotella ruminicola'' also generate propionate when fermenting glucose.<ref>{{Cite web |last1=Zhang |first1=Bo |last2=Lingga |first2=Christopher |last3=De Groot |first3=Hannah |last4=Hackmann |first4=Timothy J |date=September 30, 2023 |title=The oxidoreductase activity of Rnf balances redox cofactors during fermentation of glucose to propionate in Prevotella |url=https://www.researchgate.net/publication/374334665 |access-date=September 26, 2024 |website=Research Gate}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)