Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic programming
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Run-time complexity== === Convex quadratic programming === For [[positive-definite matrix|positive definite]] {{mvar|Q}}, when the problem is convex, the [[ellipsoid method]] solves the problem in (weakly) [[polynomial time]].<ref>{{cite journal| last=Kozlov | first=M. K. |author2=S. P. Tarasov | author3-link=Leonid Khachiyan |author3=Leonid G. Khachiyan | year=1979 | title=[Polynomial solvability of convex quadratic programming] | journal=[[Doklady Akademii Nauk SSSR]] | volume=248 | pages=1049β1051}} Translated in: {{cite journal| journal=Soviet Mathematics - Doklady | volume=20 | pages=1108β1111}}</ref> Ye and Tse<ref>{{Cite journal |last1=Ye |first1=Yinyu |last2=Tse |first2=Edison |date=1989-05-01 |title=An extension of Karmarkar's projective algorithm for convex quadratic programming |url=https://doi.org/10.1007/BF01587086 |journal=Mathematical Programming |language=en |volume=44 |issue=1 |pages=157β179 |doi=10.1007/BF01587086 |s2cid=35753865 |issn=1436-4646|url-access=subscription }}</ref> present a polynomial-time algorithm, which extends [[Karmarkar's algorithm]] from linear programming to convex quadratic programming. On a system with ''n'' variables and ''L'' input bits, their algorithm requires O(L n) iterations, each of which can be done using O(L n<sup>3</sup>) arithmetic operations, for a total runtime complexity of O(''L''<sup>2</sup> ''n''<sup>4</sup>). Kapoor and Vaidya<ref>{{Cite book |last1=Kapoor |first1=S |last2=Vaidya |first2=P M |chapter=Fast algorithms for convex quadratic programming and multicommodity flows |date=1986-11-01 |title=Proceedings of the eighteenth annual ACM symposium on Theory of computing - STOC '86 |chapter-url=https://dl.acm.org/doi/10.1145/12130.12145 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=147β159 |doi=10.1145/12130.12145 |isbn=978-0-89791-193-1|s2cid=18108815 }}</ref> present another algorithm, which requires O(''L'' * log ''L'' ''* n''<sup>3.67</sup> * log ''n'') arithmetic operations. === Non-convex quadratic programming === If {{mvar|Q}} is indefinite, (so the problem is non-convex) then the problem is [[NP-hard]].<ref>{{cite journal | last = Sahni | first = S. | title = Computationally related problems | journal = SIAM Journal on Computing | volume = 3 | issue = 4 | pages = 262β279 | year = 1974 | doi=10.1137/0203021| url = http://www.cise.ufl.edu/~sahni/papers/comp.pdf | citeseerx = 10.1.1.145.8685 }}</ref> A simple way to see this is to consider the non-convex quadratic constraint ''x<sub>i</sub>''<sup>2</sup> = ''x<sub>i</sub>''. This constraint is equivalent to requiring that ''x<sub>i</sub>'' is in {0,1}, that is, ''x<sub>i</sub>'' is a binary integer variable. Therefore, such constraints can be used to model any [[Integer programming|integer program]] with binary variables, which is known to be NP-hard. Moreover, these non-convex problems might have several stationary points and local minima. In fact, even if {{mvar|Q}} has only one negative [[eigenvalue]], the problem is (strongly) [[NP-hard]].<ref>{{cite journal | title = Quadratic programming with one negative eigenvalue is (strongly) NP-hard | first1 = Panos M. | last1 = Pardalos | first2 = Stephen A. | last2 = Vavasis | journal = Journal of Global Optimization | volume = 1 | issue = 1 | year = 1991 | pages = 15β22 | doi=10.1007/bf00120662| s2cid = 12602885 }}</ref> Moreover, finding a KKT point of a non-convex quadratic program is CLS-hard.<ref>{{Cite arXiv |eprint=2311.13738 |last1=Fearnley |first1=John |last2=Goldberg |first2=Paul W. |last3=Hollender |first3=Alexandros |last4=Savani |first4=Rahul |title=The Complexity of Computing KKT Solutions of Quadratic Programs |date=2023 |class=cs.CC }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)