Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum chromodynamics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Lagrangian === The dynamics of the quarks and gluons are defined by the quantum chromodynamics [[Lagrangian (field theory)|Lagrangian]]. The [[gauge invariant]] QCD Lagrangian is {{Equation box 1 |indent =: |equation = :<math>\mathcal{L}_\mathrm{QCD} = \bar{\psi}_i \left( i \gamma^\mu (D_\mu)_{ij} - m\, \delta_{ij}\right) \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a </math>|border |border colour = #50C878 |background colour = #ECFCF4}} where <math>\psi_i(x) \,</math> is the quark field, a dynamical function of spacetime, in the [[fundamental representation]] of the [[SU(3)]] gauge [[Group (mathematics)|group]], indexed by <math>i</math> and <math>j</math> running from <math>1</math> to <math>3</math>; <math>\bar \psi_i \,</math> is the [[Dirac adjoint]] of <math>\psi_i \,</math>; <math>D_\mu</math> is the [[gauge covariant derivative]]; the γ<sup>μ</sup> are [[Gamma matrices]] connecting the spinor representation to the vector representation of the [[Lorentz group]]. Herein, the [[gauge covariant derivative]] <math>\left( D_\mu \right)_{ij} = \partial_\mu \delta_{ij} - i g \left( T_a \right)_{ij} \mathcal{A}^a_\mu \,</math>couples the quark field with a coupling strength <math>g \,</math>to the gluon fields via the infinitesimal SU(3) generators <math>T_a \,</math>in the fundamental representation. An explicit representation of these generators is given by <math>T_a = \lambda_a / 2 \,</math>, wherein the <math>\lambda_a \, (a = 1 \ldots 8)\,</math>are the [[Gell-Mann matrices]]. The symbol <math>G^a_{\mu \nu} \,</math> represents the gauge invariant [[gluon field strength tensor]], analogous to the [[electromagnetic tensor|electromagnetic field strength tensor]], ''F''<sup>μν</sup>, in [[quantum electrodynamics]]. It is given by:<ref>{{cite journal|title=The field strength correlator from QCD sum rules |author1=M. Eidemüller |author2=H.G. Dosch |author3=M. Jamin |location=Heidelberg, Germany |journal=Nucl. Phys. B Proc. Suppl. |volume=86 |pages=421–425 |year=2000 |issue=1–3 |arxiv=hep-ph/9908318|bibcode=2000NuPhS..86..421E|doi=10.1016/S0920-5632(00)00598-3|s2cid=18237543 }}</ref> :<math>G^a_{\mu \nu} = \partial_\mu \mathcal{A}^a_\nu - \partial_\nu \mathcal{A}^a_\mu + g f^{abc} \mathcal{A}^b_\mu \mathcal{A}^c_\nu \,,</math> where <math>\mathcal{A}^a_\mu(x) \,</math> are the [[gluon field]]s, dynamical functions of spacetime, in the [[adjoint representation]] of the SU(3) gauge group, indexed by ''a'', ''b'' and ''c'' running from <math>1</math> to <math>8</math>; and ''f<sub>abc</sub>'' are the [[structure constants]] of SU(3) (the generators of the adjoint representation). Note that the rules to move-up or pull-down the ''a'', ''b'', or ''c'' indices are ''trivial'', (+, ..., +), so that ''f<sup>abc</sup>'' = ''f<sub>abc</sub>'' = ''f''<sup>''a''</sup><sub>''bc''</sub> whereas for the ''μ'' or ''ν'' indices one has the non-trivial ''relativistic'' rules corresponding to the [[metric signature]] (+ − − −). The variables ''m'' and ''g'' correspond to the quark mass and coupling of the theory, respectively, which are subject to renormalization. An important theoretical concept is the ''[[Wilson loop]]'' (named after [[Kenneth G. Wilson]]). In lattice QCD, the final term of the above Lagrangian is discretized via Wilson loops, and more generally the behavior of Wilson loops can distinguish [[Color confinement|confined]] and deconfined phases.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)