Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum computing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Gate array {{anchor|Quantum circuit|Definition}} ==== [[File:Quantum Toffoli Gate Implementation.svg|thumb|A quantum circuit diagram implementing a [[Toffoli gate]] from [[Quantum logic gate|more primitive gates]]|upright=1.15]] A [[quantum circuit|quantum gate array]] decomposes computation into a sequence of few-qubit [[quantum gate]]s. A quantum computation can be described as a network of quantum logic gates and measurements. However, any measurement can be deferred to the end of quantum computation, though this deferment may come at a computational cost, so most quantum circuits depict a network consisting only of quantum logic gates and no measurements. Any quantum computation (which is, in the above formalism, any [[unitary matrix]] of size <math>2^n \times 2^n</math> over <math>n</math> qubits) can be represented as a network of quantum logic gates from a fairly small family of gates. A choice of gate family that enables this construction is known as a [[Quantum logic gate#Universal quantum gates|universal gate set]], since a computer that can run such circuits is a [[universal quantum computer]]. One common such set includes all single-qubit gates as well as the CNOT gate from above. This means any quantum computation can be performed by executing a sequence of single-qubit gates together with CNOT gates. Though this gate set is infinite, it can be replaced with a finite gate set by appealing to the [[Solovay–Kitaev theorem|Solovay-Kitaev theorem]]. Implementation of Boolean functions using the few-qubit quantum gates is presented here.<ref>{{Cite book |last1=Kurgalin |first1=Sergei |title=Concise guide to quantum computing: algorithms, exercises, and implementations |last2=Borzunov |first2=Sergei |date=2021 |publisher=Springer |isbn=978-3-030-65054-4 |series=Texts in computer science |location=Cham}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)