Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum harmonic oscillator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Highly excited states=== {{multiple image | width = 320 | direction = vertical | image1 = Excited_state_for_quantum_harmonic_oscillator.svg | image2 = QHOn30pdf.svg | footer = Wavefunction (top) and probability density (bottom) for the {{math|1=''n'' = 30}} excited state of the quantum harmonic oscillator. Vertical dashed lines indicate the classical turning points, while the dotted line represents the classical probability density. }} When {{mvar|n}} is large, the eigenstates are localized into the classical allowed region, that is, the region in which a classical particle with energy {{math|''E''<sub>''n''</sub>}} can move. The eigenstates are peaked near the turning points: the points at the ends of the classically allowed region where the classical particle changes direction. This phenomenon can be verified through [[Hermite_polynomials#Asymptotic_expansion|asymptotics of the Hermite polynomials]], and also through the [[WKB approximation]]. The frequency of oscillation at {{mvar|x}} is proportional to the momentum {{math|''p''(''x'')}} of a classical particle of energy {{math|''E''<sub>''n''</sub>}} and position {{mvar|x}}. Furthermore, the square of the amplitude (determining the probability density) is ''inversely'' proportional to {{math|''p''(''x'')}}, reflecting the length of time the classical particle spends near {{mvar|x}}. The system behavior in a small neighborhood of the turning point does not have a simple classical explanation, but can be modeled using an [[Airy function]]. Using properties of the Airy function, one may estimate the probability of finding the particle outside the classically allowed region, to be approximately <math display="block">\frac{2}{n^{1/3}3^{2/3}\Gamma^2(\tfrac{1}{3})}=\frac{1}{n^{1/3}\cdot 7.46408092658...}</math> This is also given, asymptotically, by the integral <math display="block">\frac{1}{2\pi}\int_{0}^{\infty}e^{(2n+1)\left (x-\tfrac{1}{2}\sinh(2x) \right )}dx ~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)