Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Race and genetics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==={{anchor|Visible traits, proteins, and genes studied}}Early studies of traits, proteins, and genes=== {{See also|Race (classification of human beings)}} Early racial classification attempts measured [[anthropometry|surface traits]], particularly skin color, hair color and texture, eye color, and head size and shape. (Measurements of the latter through [[craniometry]] were repeatedly discredited in the late 19th and mid-20th centuries due to a lack of correlation of phenotypic traits with racial categorization.<ref name="Orsucci">{{cite web |first=Andrea |last=Orsucci |url=http://www.unifi.it/riviste/cromohs/3_98/orsucci.html |title=Ariani, indogermani, stirpi mediterranee: aspetti del dibattito sulle razze europee (1870–1914) |archive-url=https://archive.today/20121218231754/http://www.unifi.it/riviste/cromohs/3_98/orsucci.html|archive-date=December 18, 2012 |work=Cromohs |year=1998 |lang=it}}</ref>) In actuality, biological adaptation plays the biggest role in these bodily features and skin type. A relative handful of genes accounts for the inherited factors shaping a person's appearance.<ref>{{cite news |first=Natalie |last=Angier |url=http://partners.nytimes.com/library/national/science/082200sci-genetics-race.html|title=Do Races Differ? Not Really, DNA Shows|date=22 August 2000|work=The New York Times|access-date=3 September 2011|archive-date=30 April 2021|archive-url=https://web.archive.org/web/20210430051310/https://archive.nytimes.com/www.nytimes.com/library/national/science/082200sci-genetics-race.html|url-status=live}}</ref><ref>{{Cite journal|last1=Owens|first1=Kelly|last2=King|first2=Mary-Claire|date=1999-10-15|title=Genomic Views of Human History|journal=Science|volume=286|issue=5439|pages=451–453|doi=10.1126/science.286.5439.451|issn=0036-8075|pmid=10521333|quote=Variation in other traits popularly used to identify 'races' is likely to be due to similarly straightforward mechanisms, involving limited numbers of genes with very specific physiological effects.}}</ref> Humans have an estimated 19,000–20,000 human protein-coding genes.<ref>{{cite journal|date=November 2014|title=Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes|journal=Human Molecular Genetics|volume=23|issue=22|pages=5866–5878|doi=10.1093/hmg/ddu309|pmc=4204768|pmid=24939910|vauthors=Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, Vazquez J, Valencia A, Tress ML}}</ref> Richard Sturm and David Duffy describe 11 genes that affect skin pigmentation and explain most variations in [[human skin color]], the most significant of which are [[Melanocortin 1 receptor|MC1R]], ASIP, [[OCA2]], and TYR.<ref>{{Cite journal|last1=Sturm|first1=Richard A.|last2=Duffy|first2=David L.|date=2012|title=Human pigmentation genes under environmental selection|journal=Genome Biology|volume=13|issue=9|pages=248|doi=10.1186/gb-2012-13-9-248|issn=1474-760X|pmc=3491390|pmid=23110848 |doi-access=free }}</ref> There is evidence that as many as 16 different genes could be responsible for [[eye color]] in humans; however, the main two genes associated with eye color variation are ''[[OCA2]]'' and ''[[HERC2]]'', and both are localized in chromosome 15.<ref name="nature.com">{{cite journal|last2=Rabago-Smith|first2=Montserrat|title=Genotype-phenotype associations and human eye color|journal=[[Journal of Human Genetics]]|date=January 2011|volume=56|issue=1|pages=5–7|doi=10.1038/jhg.2010.126|pmid=20944644|last1=White|first1=Désirée|doi-access=free}}</ref> ==== Analysis of blood proteins and between-group genetics ==== [[File:groupa.png|thumb|right|upright=1.4|alt=Multicolored world map|Geographic distribution of blood group A]] [[File:groupb.png|thumb|right|upright=1.4|alt=Multicolored world map|Geographic distribution of blood group B]] Before the discovery of DNA, scientists used blood proteins (the [[human blood group systems]]) to study human genetic variation. Research by [[Ludwik and Hanka Herschfeld]] during [[World War I]] found that the incidence of [[blood groups]] A and B differed by region; for example, among Europeans 15 percent were group B and 40 percent group A. Eastern Europeans and Russians had a higher incidence of group B; people from India had the greatest incidence. The Herschfelds concluded that humans comprised two "biochemical races", originating separately. It was hypothesized that these two races later mixed, resulting in the patterns of groups A and B. This was one of the first theories of racial differences to include the idea that human variation did not correlate with genetic variation. It was expected that groups with similar proportions of blood groups would be more closely related, but instead it was often found that groups separated by great distances (such as those from Madagascar and Russia), had similar incidences.<ref name="bryansykes">{{cite book |last=Sykes |first=Bryan |chapter=From Blood Groups to Genes |title=The seven daughters of Eve |publisher=Norton |location=New York |year=2001 |pages=[https://archive.org/details/sevendaughtersof00syke/page/32 32]–51 |isbn=978-0-393-02018-2 |chapter-url-access=registration |chapter-url=https://archive.org/details/sevendaughtersof00syke }}</ref> It was later discovered that the [[ABO blood group system]] is not just common to humans, but shared with other primates,<ref>{{Cite book|title=Molecular biology and evolution of blood group and MHC antigens in primates|last2=Klein|first2=Jan|last3=Socha|first3=Wladyslaw W.|date=2012|publisher=Springer Science & Business Media|isbn=978-3-642-59086-3|last1=Blancher|first1=Antoine}}</ref> and likely predates all human groups.<ref>{{Cite journal|last2=Thompson|first2=Emma E.|last3=Flutre|first3=Timothée|last4=Lovstad|first4=Jessica|last5=Venkat|first5=Aarti|last6=Margulis|first6=Susan W.|last7=Moyse|first7=Jill|last8=Ross|first8=Steve|last9=Gamble|first9=Kathryn|date=2012-11-06|title=The ABO blood group is a trans-species polymorphism in primates|journal=Proceedings of the National Academy of Sciences|volume=109|issue=45|pages=18493–18498|doi=10.1073/pnas.1210603109|issn=0027-8424|pmid=23091028|last1=Ségurel|first1=Laure|last10=Sella|first10=Guy|last11=Ober|first11=Carole|last12=Przeworski|first12=Molly|pmc=3494955|arxiv=1208.4613|bibcode=2012PNAS..10918493S|doi-access=free}}</ref> In 1972, [[Richard Lewontin]] performed a F<sub>ST</sub> statistical analysis using 17 markers (including blood-group proteins). He found that the majority of genetic differences between humans (85.4 percent) were found within a population, 8.3 percent were found between populations within a race and 6.3 percent were found to differentiate races (Caucasian, African, Mongoloid, South Asian Aborigines, Amerinds, Oceanians, and Australian Aborigines in his study). Since then, other analyses have found F<sub>ST</sub> values of 6–10 percent between continental human groups, 5–15 percent between different populations on the same continent and 75–85 percent within populations.<ref>{{cite book|last=Lewontin|first=Richard|title=Evolutionary Biology|date=1972|isbn=978-1-4684-9065-7|editor1=Theodosius Dobzhansky|volume=6|pages=381–398|chapter=The Apportionment of Human Diversity|doi=10.1007/978-1-4684-9063-3_14|s2cid=21095796 |author-link=Richard Lewontin|editor2=Max K. Hecht|editor3=William C. Steere}}</ref><ref name="Risch2002">{{cite journal|last1=Risch|first1=Neil|last2=Burchard|first2=Esteban|last3=Ziv|first3=Elad|last4=Tang|first4=Hua|year=2002|title=Categorization of humans in biomedical research: genes, race and disease|journal=Genome Biology|volume=3|issue=7|pages=comment2007.1|doi=10.1186/gb-2002-3-7-comment2007|issn=1465-6906|pmc=139378|pmid=12184798 |doi-access=free }}</ref><ref name="Templeton1998">{{cite book|last=Templeton|first=Alan R.|title=Genetic nature/culture: anthropology and science beyond the two-culture divide|publisher=University of California Press|year=2003|isbn=978-0-520-23792-6|editor1-last=Goodman|editor1-first=Alan H.|location=Berkeley|pages=234–257|chapter=Human Races in the Context of Recent Human Evolution: A Molecular Genetic Perspective|access-date=23 September 2014|editor2-last=Heath|editor2-first=Deborah|editor3-last=Lindee|editor3-first=M. Susan|chapter-url=http://www.ucpress.edu/book.php?isbn=9780520237933|archive-date=9 November 2014|archive-url=https://web.archive.org/web/20141109142919/http://www.ucpress.edu/book.php?isbn=9780520237933|url-status=live}}</ref><ref>{{cite journal|vauthors=Ossorio P, Duster T|date=January 2005|title=Race and genetics: controversies in biomedical, behavioral, and forensic sciences|journal=The American Psychologist|volume=60|issue=1|pages=115–128|doi=10.1037/0003-066X.60.1.115|pmid=15641926}}</ref><ref name="Lewontin2005">{{cite web |last=Lewontin |first=R. C. |year=2005 |url=http://raceandgenomics.ssrc.org/Lewontin/ |title=Confusions About Human Races |archive-url=https://web.archive.org/web/20130504132215/http://raceandgenomics.ssrc.org/Lewontin/ |archive-date=2013-05-04 |department=Race and Genomics |website=Social Sciences Research Council |access-date=28 December 2006}}</ref> This view has been affirmed by the [[American Anthropological Association]] and the American Association of Physical Anthropologists since.<ref name=":0">{{Cite journal|last1=Long|first1=Jeffrey C.|last2=Kittles|first2=Rick A.|date=2009|title=Human Genetic Diversity and the Nonexistence of Biological Races|url=https://muse.jhu.edu/journals/human_biology/v081/81.5-6.long.html|journal=Human Biology|volume=81|issue=5|pages=777–798|doi=10.3378/027.081.0621|issn=1534-6617|pmid=20504196|access-date=2016-01-13|s2cid=30709062|archive-date=2020-03-13|archive-url=https://web.archive.org/web/20200313181641/https://muse.jhu.edu/article/381883|url-status=live}}</ref> ==== Critiques of blood protein analysis ==== While acknowledging Lewontin's observation that humans are genetically homogeneous, [[A. W. F. Edwards]] in his 2003 paper "[[Lewontin's Fallacy|Human Genetic Diversity: Lewontin's Fallacy]]" argued that information distinguishing populations from each other is hidden in the correlation structure of allele frequencies, making it possible to classify individuals using mathematical techniques. Edwards argued that even if the probability of misclassifying an individual based on a single genetic marker is as high as 30 percent (as Lewontin reported in 1972), the misclassification probability nears zero if enough genetic markers are studied simultaneously. Edwards saw Lewontin's argument as based on a political stance, denying biological differences to argue for social equality.<ref name="Edwards2003">{{cite journal|author=Edwards AW|date=August 2003|title=Human genetic diversity: Lewontin's fallacy|journal=BioEssays|volume=25|issue=8|pages=798–801|doi=10.1002/bies.10315|pmid=12879450}}</ref> Edwards' paper is reprinted, commented upon by experts such as [[Noah Rosenberg]], and given further context in an interview with philosopher of science Rasmus Grønfeldt Winther in a recent anthology.<ref>{{cite book|author-last=Winther|author-first=Rasmus Grønfeldt|url=https://www.cambridge.org/de/academic/subjects/life-sciences/genetics/phylogenetic-inference-selection-theory-and-history-science-selected-papers-w-f-edwards-commentaries|title=Phylogenetic Inference, Selection Theory, and History of Science: Selected Papers of A. W. F. Edwards with Commentaries|date=2018|publisher=[[Cambridge University Press]]|isbn=9781107111721|location=Cambridge, U.K.|access-date=2018-12-13|archive-date=2019-08-15|archive-url=https://web.archive.org/web/20190815031238/https://www.cambridge.org/de/academic/subjects/life-sciences/genetics/phylogenetic-inference-selection-theory-and-history-science-selected-papers-w-f-edwards-commentaries|url-status=live}}</ref> As referred to before, Edwards criticises Lewontin's paper as he took 17 different traits and analysed them independently, without looking at them in conjunction with any other protein. Thus, it would have been fairly convenient for Lewontin to come up with the conclusion that racial naturalism is not tenable, according to his argument.<ref>{{cite book|last1=Edwards|first1=AWF|title=Human genetic diversity: Lewontin's fallacy, BioEssays|date=2003|pages=798–801}}</ref> Sesardic also strengthened Edwards' view, as he used an illustration referring to squares and triangles, and showed that if you look at one trait in isolation, then it will most likely be a bad predicator of which group the individual belongs to.<ref>{{cite book|last1=Sesardic|first1=N.|title=Race: a social destruction of a biological concept. Biology and Philosophy|date=2010|pages=143–162}}</ref> In contrast, in a 2014 paper, reprinted in the 2018 Edwards Cambridge University Press volume, Rasmus Grønfeldt Winther argues that "Lewontin's Fallacy" is effectively a misnomer, as there really are two different sets of methods and questions at play in studying the genomic population structure of our species: "variance partitioning" and "clustering analysis." According to Winther, they are "two sides of the same mathematics coin" and neither "necessarily implies anything about the ''reality'' of human groups."<ref>{{Cite book | last1 = Winther | first1 = R.G. | chapter = The Genetic Reification of "Race"? A Story of Two Mathematical Methods | title = Phylogenetic Inference, Selection Theory, and History of Science: Selected Papers of AWF Edwards with Commentaries | editor = R.G. Winther | pages = 489, 488–508 | year = 2018 | publisher = Cambridge University Press | isbn = 9781107111721 | url = https://www.cambridge.org/de/academic/subjects/life-sciences/genetics/phylogenetic-inference-selection-theory-and-history-science-selected-papers-w-f-edwards-commentaries | access-date = 2018-12-13 | archive-date = 2019-08-15 | archive-url = https://web.archive.org/web/20190815031238/https://www.cambridge.org/de/academic/subjects/life-sciences/genetics/phylogenetic-inference-selection-theory-and-history-science-selected-papers-w-f-edwards-commentaries | url-status = live }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)