Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ray transfer matrix analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Relation between geometrical ray optics and wave optics == The theory of [[Linear canonical transformation]] implies the relation between ray transfer matrix ([[geometrical optics]]) and wave optics.{{sfnp|Nazarathy|Shamir|1982}} {| class="wikitable plainrowheaders" |- ! scope="col" style="max-width: 10em;" | Element ! scope="col" style="max-width: 8em;" | Matrix in geometrical optics ! scope="col" | Operator in wave optics ! scope="col" | Remarks |- ! scope="row" | Scaling | style="text-align: center;" | <math>\begin{pmatrix} b^{-1} & 0\\ 0 & b\end{pmatrix} </math> |<math>\mathcal{V}[b] u(x)=u(b x)</math> | |- ! scope="row" | Quadratic phase factor | style="text-align: center;" | <math>\begin{pmatrix} 1 & 0\\ c & 1 \end{pmatrix} </math> |<math>Q[c]=\exp i \frac{k_{0}}{2} c x^{2}</math> |<math>k_0</math>: wave number |- ! scope="row" | Fresnel free-space-propagation operator | style="text-align: center;" | <math>\begin{pmatrix} 1 & d\\ 0 & 1 \end{pmatrix} </math> |<math>\mathcal{R}[d]\left\{U\left(x_{1}\right)\right\}=\frac{1}{\sqrt{i \lambda d}} \int_{-\infty}^{\infty} U\left(x_{1}\right) e^{i \frac{k}{2 d}\left(x_{2}-x_{1}\right)^{2}} d x_1 </math> |<math>x_1 </math>: coordinate of the source <math>x_2 </math>: coordinate of the goal |- ! scope="row" | Normalized Fourier-transform operator | style="text-align: center;" | <math>\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} </math> |<math>\mathcal{F}=\left(i \lambda_{0}\right)^{-1 / 2} \int_{-\infty}^{\infty} d x\left[\exp \left(i k_{0} p x\right)\right] \ldots </math> | |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)