Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reciprocal lattice
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Higher dimensions=== The formula for <math>n</math> dimensions can be derived assuming an <math>n</math>-[[dimension (vector space)|dimensional]] [[real number|real]] vector space <math>V</math> with a [[basis (linear algebra)|basis]] <math>(\mathbf{a}_1,\ldots,\mathbf{a}_n)</math> and an inner product <math>g\colon V\times V\to\mathbf{R}</math>. The reciprocal lattice vectors are uniquely determined by the formula <math>g(\mathbf{a}_i,\mathbf{b}_j)=2\pi\delta_{ij}</math>. Using the [[Permutation#Two-line notation|permutation]] : <math>\sigma = \begin{pmatrix} 1 & 2 & \cdots &n\\ 2 & 3 & \cdots &1 \end{pmatrix},</math> they can be determined with the following formula: :<math> \mathbf{b}_i = 2\pi\frac{\varepsilon_{\sigma^1i\ldots\sigma^ni}}{\omega(\mathbf{a}_1,\ldots,\mathbf{a}_n)}g^{-1}(\mathbf{a}_{\sigma^{n-1}i}\,\lrcorner\ldots\mathbf{a}_{\sigma^1i}\,\lrcorner\,\omega)\in V </math> Here, <math>\omega\colon V^n \to \mathbf{R}</math> is the [[volume form]], <math>g^{-1}</math> is the inverse of the vector space isomorphism <math>\hat{g}\colon V \to V^*</math> defined by <math>\hat{g}(v)(w) = g(v,w)</math> and <math>\lrcorner</math> denotes the [[Interior product|inner multiplication]]. One can verify that this formula is equivalent to the known formulas for the two- and three-dimensional case by using the following facts: In three dimensions, <math>\omega(u,v,w) = g(u \times v, w)</math> and in two dimensions, <math>\omega(v,w) = g(Rv,w)</math>, where <math>R \in \text{SO}(2) \subset L(V,V)</math> is the [[rotation]] by 90 degrees (just like the volume form, the angle assigned to a rotation depends on the choice of orientation<ref>{{cite book | last=Audin|first=Michèle | title=Geometry | publisher=Springer | year=2003|page=69}}</ref>).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)