Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Red-giant branch
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Properties=== The table below shows the typical lifetimes on the main sequence (MS), subgiant branch (SB) and red-giant branch (RGB), for stars with different initial masses, all at solar metallicity (Z = 0.02). Also shown are the helium core mass, surface effective temperature, radius and luminosity at the start and end of the RGB for each star. The end of the red-giant branch is defined to be when core helium ignition takes place.<ref name=pols>{{cite journal|bibcode=1998MNRAS.298..525P|title=Stellar evolution models for Z = 0.0001 to 0.03|journal=Monthly Notices of the Royal Astronomical Society|volume=298|issue=2|pages=525|last1=Pols|first1=Onno R.|last2=Schröder|first2=Klaus-Peter|last3=Hurley|first3=Jarrod R.|last4=Tout|first4=Christopher A.|last5=Eggleton|first5=Peter P.|year=1998|doi=10.1046/j.1365-8711.1998.01658.x|doi-access=free}}</ref> {| class="wikitable" |- ! rowspan=2 | Mass<br/>({{solar mass}}) !! rowspan=2 | MS (GYrs) ! rowspan="2" |Hook (MYrs)!! rowspan="2" | SB (MYrs) !! rowspan=2 | RGB<br/>(MYrs) !! colspan=4 | RGB<sub>foot</sub><br/> !! colspan=4 | RGB<sub>end</sub><br/> |- ! Core mass ({{solar mass}}) !! T<sub>eff</sub> (K) !! Radius ({{solar radius}}) !! Luminosity ({{solar luminosity}}) !! Core mass ({{solar mass}}) !! T<sub>eff</sub> (K) !! Radius ({{solar radius}}) !! Luminosity ({{solar luminosity}}) |- style="text-align:right;" | 0.6 || 58.8 |N/A|| 5,100 || 2,500 || 0.10 || 4,634 || 1.2 || 0.6 || 0.48 || 2,925 || 207 || 2,809 |- style="text-align:right;" | 1.0 || 9.3 |N/A|| 2,600 || 760 || 0.13 || 5,034 || 2.0 || 2.2 || 0.48 || 3,140 || 179 || 2,802 |- style="text-align:right;" | 2.0 || 1.2 |10|| 22 || 25 || 0.25 || 5,220 || 5.4 || 19.6 || 0.34 || 4,417 || 23.5 || 188 |- style="text-align:right;" | 5.0 || 0.1 |0.4|| 15 || 0.3 || 0.83 || 4,737 || 43.8 || 866.0 || 0.84 || 4,034 || 115 || 3,118 |} Intermediate-mass stars only lose a small fraction of their mass as main-sequence and subgiant stars, but lose a significant amount of mass as red giants.<ref name=meynet>{{cite journal|bibcode=1993A&AS...98..477M|title=New dating of galactic open clusters|journal=Astronomy and Astrophysics Supplement Series|volume=98|pages=477|last1=Meynet|first1=G.|last2=Mermilliod|first2=J.-C.|last3=Maeder|first3=A.|year=1993}}</ref> The mass lost by a star similar to the Sun affects the temperature and luminosity of the star when it reaches the horizontal branch, so the properties of red-clump stars can be used to determine the mass difference before and after the helium flash. Mass lost from red giants also determines the mass and properties of the [[white dwarf]]s that form subsequently. Estimates of total mass loss for stars that reach the tip of the red-giant branch are around {{solar mass|0.2–0.25}}. Most of this is lost within the final million years before the helium flash.<ref name=origlia>{{cite journal|bibcode=2002ApJ...571..458O|title=ISOCAM Observations of Galactic Globular Clusters: Mass Loss along the Red Giant Branch|journal=The Astrophysical Journal|volume=571|issue=1|pages=458–468|last1=Origlia|first1=Livia|last2=Ferraro|first2=Francesco R.|last3=Fusi Pecci|first3=Flavio|last4=Rood|first4=Robert T.|year=2002|doi=10.1086/339857|arxiv = astro-ph/0201445 |s2cid=18299018}}</ref><ref name=mcdonald>{{cite journal|bibcode=2011ApJS..193...23M|arxiv=1101.1095|title=Fundamental Parameters, Integrated Red Giant Branch Mass Loss, and Dust Production in the Galactic Globular Cluster 47 Tucanae|journal=The Astrophysical Journal Supplement|volume=193|issue=2|pages=23|last1=McDonald|first1=I.|last2=Boyer|first2=M. L.|last3=Van Loon|first3=J. Th.|last4=Zijlstra|first4=A. A.|last5=Hora|first5=J. L.|last6=Babler|first6=B.|last7=Block|first7=M.|last8=Gordon|first8=K.|last9=Meade|first9=M.|last10=Meixner|first10=M.|last11=Misselt|first11=K.|last12=Robitaille|first12=T.|last13=Sewiło|first13=M.|last14=Shiao|first14=B.|last15=Whitney|first15=B.|year=2011|doi=10.1088/0067-0049/193/2/23|s2cid=119266025}}</ref> Mass lost by more massive stars that leave the red-giant branch before the helium flash is more difficult to measure directly. The current mass of Cepheid variables such as [[δ Cephei]] can be measured accurately because there are either binaries or pulsating stars. When compared with evolutionary models, such stars appear to have lost around 20% of their mass, much of it during the blue loop and especially during pulsations on the instability strip.<ref name=xu>{{cite journal|bibcode=2004A&A...418..213X|title=Blue loops of intermediate mass stars . I. CNO cycles and blue loops|journal=Astronomy and Astrophysics|volume=418|pages=213–224|last1=Xu|first1=H. Y.|last2=Li|first2=Y.|year=2004|doi=10.1051/0004-6361:20040024|doi-access=free}}</ref><ref name=neilson>{{cite journal|bibcode=2011A&A...529L...9N|arxiv=1104.1638|title=The Cepheid mass discrepancy and pulsation-driven mass loss|journal=Astronomy & Astrophysics|volume=529|pages=L9|last1=Neilson|first1=H. R.|last2=Cantiello|first2=M.|last3=Langer|first3=N.|year=2011|doi=10.1051/0004-6361/201116920|s2cid=119180438}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)