Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Relativistic Doppler effect
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Point of null frequency shift ==== [[File:Transverse Doppler effect scenarios 6.svg|thumb|300px|Figure 4. Null frequency shift occurs for a pulse that travels the shortest distance from source to receiver.]] Given that, in the case where the inertially moving source and receiver are geometrically at their nearest approach to each other, the receiver observes a blueshift, whereas in the case where the receiver ''sees'' the source as being at its closest point, the receiver observes a redshift, there obviously must exist a point where blueshift changes to a redshift. In Fig. 2, the signal travels perpendicularly to the receiver path and is blueshifted. In Fig. 3, the signal travels perpendicularly to the source path and is redshifted. As seen in Fig. 4, null frequency shift occurs for a pulse that travels the shortest distance from source to receiver. When viewed in the frame where source and receiver have the same speed, this pulse is emitted perpendicularly to the source's path and is received perpendicularly to the receiver's path. The pulse is emitted slightly before the point of closest approach, and it is received slightly after.<ref name="Brown_b">{{cite web |last1=Brown |first1=Kevin S. |title=The Doppler Effect |url=https://www.mathpages.com/home/kmath587/kmath587.htm |publisher=Mathpages |access-date=12 October 2018}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)