Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Relevance logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Humberstone models==== Urquhart showed that the semilattice logic for R is properly stronger than the positive fragment of R. Lloyd Humberstone provided an enrichment of the operational models that permitted a different truth condition for disjunction. The resulting class of models generates exactly the positive fragment of R. An operational frame <math>F</math> is a quadruple <math>(K,\cdot,+,0)</math>, where <math>K</math> is a non-empty set, <math>0\in K</math>, and {<math>\cdot</math>, <math>+</math>} are binary operations on <math>K</math>. Let <math>a\leq b</math> be defined as <math>\exists x(a+x=b)</math>. The frame conditions are the following. {{ordered list|start=1 | <math>0\cdot x=x</math> | <math>x\cdot y=y\cdot x</math> | <math>(x\cdot y)\cdot z=x\cdot(y\cdot z)</math> | <math>x\leq x\cdot x</math> | <math>x+y=y+x</math> | <math>(x+y)+z=x+(y+z)</math> | <math>x+x=x</math> | <math>x\cdot(y+z)=x\cdot y+x\cdot z</math> | <math>x\leq y+z\Rightarrow \exists y',z'\in K(y'\leq y</math>, <math>z'\leq z</math> and <math>x=y'+z')</math> }} An operational model <math>M</math> is a frame <math>F</math> with a valuation <math>V</math> that maps pairs of points and atomic propositions to truth values, T or F. <math>V</math> can be extended to a valuation <math>\Vdash</math> on complex formulas as follows. * <math>M,a\Vdash p \iff V(a,p)=T</math>, for atomic propositions * <math>M,a+b\Vdash p \iff M,a\Vdash p</math> and <math>M,b\Vdash p</math> * <math>M,a\Vdash A\land B \iff M,a\Vdash A</math> and <math>M,a\Vdash B</math> * <math>M,a\Vdash A\lor B \iff M, a\Vdash A</math> or <math>M,a\Vdash B</math> or <math>\exists b,c(a=b+c</math>; <math>M,b\Vdash A</math> and <math>M,c\Vdash B)</math> * <math>M,a\Vdash A\to B\iff \forall b(M,b\Vdash A\Rightarrow M,a\cdot b\Vdash B)</math> A formula <math>A</math> holds in a model <math>M</math> iff <math>M,0\Vdash A</math>. A formula <math>A</math> is valid in a class of models <math>C</math> iff it holds in each model <math>M\in C</math>. The positive fragment of R is sound and complete with respect to the class of these models. Humberstone's semantics can be adapted to model different logics by dropping or adding frame conditions as follows. {| class="wikitable" |- |+ |- ! scope="col" | System ! scope="col" colspan="2" | Frame conditions |- ! scope="row" | B | 1, 5-9, 14 | rowspan="8" | {{ordered list|start=10 | <math>x\leq x\cdot 0</math> | <math>(x\cdot y)\cdot z\leq y\cdot(x\cdot z)</math> | <math>(x\cdot y)\cdot z\leq x\cdot(y\cdot z)</math> | <math>x\cdot y\leq(x\cdot y)\cdot y</math> | <math>(y+z)\cdot x=y\cdot x+z\cdot x</math> | <math>x\cdot x=x</math> }} |- ! scope="row" | TW | 1, 11, 12, 5-9, 14 |- ! scope="row" | EW | 1, 10, 11, 5-9, 14 |- ! scope="row" | RW | 1-3, 5-9 |- ! scope="row" | T | 1, 11, 12, 13, 5-9, 14 |- ! scope="row" | E | 1, 10, 11, 13, 5-9, 14 |- ! scope="row" | R | 1-9 |- ! scope="row" | RM | 1-3, 5-9, 15 |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)