Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riemann zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The Hardy–Littlewood conjectures === In 1914, [[G. H. Hardy]] proved that {{math|''ζ'' ({{sfrac|1|2}} + ''it'')}} has infinitely many real zeros.<ref>{{cite journal|first1 = G.H. |last1 = Hardy |title = Sur les zeros de la fonction ζ(s) |journal = Comptes rendus de l'Académie des Sciences | volume = 158 |publisher = [[French Academy of Sciences]]|year = 1914 |pages = 1012–1014}}</ref><ref>{{Cite journal|last1=Hardy|first1=G. H.|last2=Fekete|first2=M.|last3=Littlewood|first3=J. E.|date=1921-09-01|title=The Zeros of Riemann's Zeta-Function on the Critical Line|journal=Journal of the London Mathematical Society|pages=15–19|url=https://zenodo.org/record/1447415| volume=s1-1| doi=10.1112/jlms/s1-1.1.15}}</ref> Hardy and [[John Edensor Littlewood|J. E. Littlewood]] formulated two conjectures on the density and distance between the zeros of {{math|''ζ'' ({{sfrac|1|2}} + ''it'')}} on intervals of large positive real numbers. In the following, {{math|''N''(''T'')}} is the total number of real zeros and {{math|''N''<sub>0</sub>(''T'')}} the total number of zeros of odd order of the function {{math|''ζ'' ({{sfrac|1|2}} + ''it'')}} lying in the interval {{math|(0, ''T'']}}. {{numbered list |For any {{math|''ε'' > 0}}, there exists a {{math|''T''<sub>0</sub>(''ε'') > 0}} such that when :<math>T \geq T_0(\varepsilon) \quad\text{ and }\quad H=T^{\frac14+\varepsilon},</math> the interval {{math|(''T'', ''T'' + ''H'']}} contains a zero of odd order. |For any {{math|''ε'' > 0}}, there exists a {{math|''T''<sub>0</sub>(''ε'') > 0}} and {{math|''c<sub>ε</sub>'' > 0}} such that the inequality :<math>N_0(T+H)-N_0(T) \geq c_\varepsilon H</math> holds when :<math>T \geq T_0(\varepsilon) \quad\text{ and }\quad H=T^{\frac12+\varepsilon}.</math> }} These two conjectures opened up new directions in the investigation of the Riemann zeta function.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)