Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rotating reference frame
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Time derivatives in the two frames === Introduce unit vectors <math>\hat{\boldsymbol{\imath}},\ \hat{\boldsymbol{\jmath}},\ \hat{\boldsymbol{k}}</math>, now representing standard unit basis vectors in the general rotating frame. As they rotate they will remain normalized and perpendicular to each other. If they rotate at the speed of <math>\Omega(t)</math> about an axis along the rotation vector <math>\boldsymbol {\Omega}(t)</math> then each unit vector <math>\hat{\boldsymbol{u}}</math> of the rotating coordinate system (such as <math>\hat{\boldsymbol{\imath}},\ \hat{\boldsymbol{\jmath}},</math> or <math>\hat{\boldsymbol{k}}</math>) abides by the following equation: <math display=block>\frac{\mathrm{d}}{\mathrm{d}t}\hat{\boldsymbol{u}} = \boldsymbol{\Omega} \times \boldsymbol{\hat{u}} \ .</math> So if <math>R(t)</math> denotes the transformation taking basis vectors of the inertial- to the rotating frame, with matrix columns equal to the basis vectors of the rotating frame, then the cross product multiplication by the rotation vector is given by <math>\boldsymbol{\Omega}\times = R'(t)\cdot R(t)^T</math>. If <math>\boldsymbol{f}</math> is a vector function that is written as<ref group=note>So <math>f_1, f_2, f_3</math> are <math>\boldsymbol{f}</math>'s coordinates with respect to the rotating basis vector <math>\hat{\boldsymbol{\imath}},\ \hat{\boldsymbol{\jmath}},\ \hat{\boldsymbol{k}}</math> (<math>\boldsymbol{f}</math>'s coordinates with respect to the inertial frame are not used). Consequently, at any given instant, the rate of change of <math>\boldsymbol{f}</math> with respect to these rotating coordinates is <math>\frac{\mathrm{d}f_1}{\mathrm{d}t}\hat{\boldsymbol{\imath}} + \frac{\mathrm{d}f_2}{\mathrm{d}t}\hat{\boldsymbol{\jmath}} + \frac{\mathrm{d}f_3}{\mathrm{d}t}\hat{\boldsymbol{k}}.</math> So for example, if <math>f_1 \equiv 1</math> and <math>f_2 = f_3 \equiv 0</math> are constants, then <math>\boldsymbol{f} \equiv \hat{\boldsymbol{\imath}}</math> is just one of the rotating basis vectors and (as expected) its time rate of change with respect to these rotating coordinates is identically <math>\boldsymbol{0}</math> (so the formula for <math>\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{f}</math> given below implies that the derivative at time <math>t</math> of this rotating basis vector <math>\boldsymbol{f} \equiv \hat{\boldsymbol{\imath}}</math> is <math>\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{i} = \boldsymbol{\Omega}(t) \times \boldsymbol{i}(t)</math>); however, its rate of change with respect to the non-rotating inertial frame will not be constantly <math>\boldsymbol{0}</math> except (of course) in the case where <math>\hat{\boldsymbol{\imath}}</math> is not moving in the inertial frame (this happens, for instance, when the axis of rotation is fixed as the <math>z</math>-axis (assuming standard coordinates) in the inertial frame and also <math>\hat{\boldsymbol{\imath}} \equiv (0, 0, 1)</math> or <math>\hat{\boldsymbol{\imath}} \equiv (0, 0, -1)</math>).</ref> <math display=block>\boldsymbol{f}(t)=f_1(t) \hat{\boldsymbol{\imath}}+f_2(t) \hat{\boldsymbol{\jmath}}+f_3(t) \hat{\boldsymbol{k}}\ ,</math> and we want to examine its first derivative then (using the [[product rule]] of differentiation):<ref name=Lanczos>{{cite book |url=https://books.google.com/books?num=10&btnG=Google+Search |title=The Variational Principles of Mechanics |author=Cornelius Lanczos |date=1986 |isbn=0-486-65067-7 |publisher=[[Dover Publications]] |edition=Reprint of Fourth Edition of 1970 |no-pp=true |pages=Chapter 4, Β§5}}</ref><ref name=Taylor>{{cite book |title=Classical Mechanics |author=John R Taylor |page= 342 |publisher=University Science Books |isbn=1-891389-22-X |date=2005 |url=https://books.google.com/books?id=P1kCtNr-pJsC&pg=PP1}}</ref> <math display=block>\begin{align} \frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{f} &= \frac{\mathrm{d}f_1}{\mathrm{d}t}\hat{\boldsymbol{\imath}} + \frac{\mathrm{d}\hat{\boldsymbol{\imath}}}{\mathrm{d}t}f_1 + \frac{\mathrm{d}f_2}{\mathrm{d}t}\hat{\boldsymbol{\jmath}} + \frac{\mathrm{d}\hat{\boldsymbol{\jmath}}}{\mathrm{d}t}f_2 + \frac{\mathrm{d}f_3}{\mathrm{d}t}\hat{\boldsymbol{k}} + \frac{\mathrm{d}\hat{\boldsymbol{k}}}{\mathrm{d}t}f_3 \\ &= \frac{\mathrm{d}f_1}{\mathrm{d}t}\hat{\boldsymbol{\imath}} + \frac{\mathrm{d}f_2}{\mathrm{d}t}\hat{\boldsymbol{\jmath}} + \frac{\mathrm{d}f_3}{\mathrm{d}t}\hat{\boldsymbol{k}} + \left[\boldsymbol{\Omega} \times \left(f_1 \hat{\boldsymbol{\imath}} + f_2 \hat{\boldsymbol{\jmath}} + f_3 \hat{\boldsymbol{k}}\right)\right] \\ &= \left( \frac{\mathrm{d}\boldsymbol{f}}{\mathrm{d}t}\right)_{\mathrm{r}} + \boldsymbol{\Omega} \times \boldsymbol{f} \end{align}</math> where <math>\left( \frac{\mathrm{d}\boldsymbol{f}}{\mathrm{d}t}\right)_{\mathrm{r}}</math> denotes the rate of change of <math>\boldsymbol{f}</math> as observed in the rotating coordinate system. As a shorthand the differentiation is expressed as: <math display=block>\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{f} = \left[ \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)_{\mathrm{r}} + \boldsymbol{\Omega} \times \right] \boldsymbol{f} \ .</math> This result is also known as the [[transport theorem]] in analytical dynamics and is also sometimes referred to as the ''basic kinematic equation''.<ref>{{cite web|last=Corless|first=Martin|title=Kinematics|url=https://engineering.purdue.edu/AAE/Academics/Courses/aae203/2003/fall/aae203F03supp.pdf|archive-url=https://web.archive.org/web/20121024121222/https://engineering.purdue.edu/AAE/Academics/Courses/aae203/2003/fall/aae203F03supp.pdf|url-status=dead|archive-date=24 October 2012|work=Aeromechanics I Course Notes|publisher=[[Purdue University]]|access-date=18 July 2011|page=213}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)