Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rydberg constant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Precision measurement == {{See also|Precision tests of QED}} The Rydberg constant was one of the most precisely determined physical constants, with a relative standard uncertainty of {{physconst|Rinf|runc=yes|after=.}} This precision constrains the values of the other physical constants that define it.<ref name="codata">P.J. Mohr, B.N. Taylor, and D.B. Newell (2015), "The 2014 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 7.0). This database was developed by J. Baker, M. Douma, and [[Svetlana Kotochigova|S. Kotochigova]]. Available: http://physics.nist.gov/constants. National Institute of Standards and Technology, Gaithersburg, MD 20899. [http://physics.nist.gov/cgi-bin/cuu/Value?ryd Link to R<sub>β</sub>], [http://physics.nist.gov/cgi-bin/cuu/Value?rydhcev Link to hcR<sub>β</sub>]. Published in {{cite journal|doi=10.1103/RevModPhys.84.1527|postscript=""|title=CODATA recommended values of the fundamental physical constants: 2010|year=2012|last1=Mohr|first1=Peter J.|last2=Taylor|first2=Barry N.|last3=Newell|first3=David B.|journal=Reviews of Modern Physics|volume=84|issue=4|pages=1527β1605|arxiv = 1203.5425 |bibcode = 2012RvMP...84.1527M |s2cid=103378639}} and {{Cite journal|doi=10.1063/1.4724320|postscript=""|title=CODATA Recommended Values of the Fundamental Physical Constants: 2010|year=2012|last1=Mohr|first1=Peter J.|last2=Taylor|first2=Barry N.|last3=Newell|first3=David B.|journal=Journal of Physical and Chemical Reference Data|volume=41|issue=4|pages=043109|bibcode = 2012JPCRD..41d3109M |arxiv=1507.07956}}.</ref> Since the Bohr model is not perfectly accurate, due to [[fine structure]], [[hyperfine splitting]], and other such effects, the Rydberg constant <math>R_{\infty}</math> cannot be ''directly'' measured at very high accuracy from the [[atomic spectral line|atomic transition frequencies]] of hydrogen alone. Instead, the Rydberg constant is inferred from measurements of atomic transition frequencies in three different atoms ([[hydrogen]], [[deuterium]], and [[antiprotonic helium]]). Detailed theoretical calculations in the framework of [[quantum electrodynamics]] are used to account for the effects of finite nuclear mass, fine structure, hyperfine splitting, and so on. Finally, the value of <math>R_{\infty}</math> is determined from the [[best fit]] of the measurements to the theory.<ref name=codata2006paper>{{cite journal |doi=10.1103/RevModPhys.80.633 |title=CODATA recommended values of the fundamental physical constants: 2006 |journal=Reviews of Modern Physics |volume=80 |pages=633β730 |year=2008|bibcode=2008RvMP...80..633M |issue=2|arxiv = 0801.0028 |last2=Taylor |last3=Newell |last1=Mohr |first1=Peter J. |first2=Barry N. |first3=David B. }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)