Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Second quantization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Definition ==== The boson creation (annihilation) operator is a linear operator, whose action on a ''N''-particle first-quantized wave function <math>\Psi</math> is defined as :<math>b_\alpha^\dagger \Psi = \frac{1}{\sqrt{N+1}}\psi_\alpha\otimes_+\Psi,</math> :<math>b_\alpha\Psi = \frac{1}{\sqrt{N}}\psi_\alpha\oslash_+\Psi,</math> where <math>\psi_\alpha\otimes_+</math> inserts the single-particle state <math>\psi_\alpha</math> in <math>N+1</math> possible insertion positions symmetrically, and <math>\psi_\alpha\oslash_+</math> deletes the single-particle state <math>\psi_\alpha</math> from <math>N</math> possible deletion positions symmetrically. ===== Examples ===== Hereinafter the tensor symbol <math>\otimes</math> between single-particle states is omitted for simplicity. Take the state <math>|1_1,1_2\rangle=(\psi_1\psi_2+\psi_2\psi_1)/\sqrt{2}</math>, create one more boson on the state <math>\psi_1</math>, :<math>\begin{array}{rl}b_1^\dagger|1_1,1_2\rangle=&\frac{1}{\sqrt{2}}(b_1^\dagger\psi_1\psi_2+b_1^\dagger\psi_2\psi_1)\\=&\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{3}}\psi_1\otimes_+\psi_1\psi_2+\frac{1}{\sqrt{3}}\psi_1\otimes_+\psi_2\psi_1\right)\\=&\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{3}}(\psi_1\psi_1\psi_2+\psi_1\psi_1\psi_2+\psi_1\psi_2\psi_1)+\frac{1}{\sqrt{3}}(\psi_1\psi_2\psi_1+\psi_2\psi_1\psi_1+\psi_2\psi_1\psi_1)\right)\\=&\frac{\sqrt{2}}{\sqrt{3}}(\psi_1\psi_1\psi_2+\psi_1\psi_2\psi_1+\psi_2\psi_1\psi_1)\\ =&\sqrt{2}|2_1,1_2\rangle.\end{array}</math> Then annihilate one boson from the state <math>\psi_1</math>, :<math>\begin{array}{rl}b_1|2_1,1_2\rangle=&\frac{1}{\sqrt{3}}(b_1\psi_1\psi_1\psi_2+b_1\psi_1\psi_2\psi_1+b_1\psi_2\psi_1\psi_1)\\=&\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}\psi_1\oslash_+\psi_1\psi_1\psi_2+\frac{1}{\sqrt{3}}\psi_1\oslash_+\psi_1\psi_2\psi_1+\frac{1}{\sqrt{3}}\psi_1\oslash_+\psi_2\psi_1\psi_1\right)\\=&\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}(\psi_1\psi_2+\psi_1\psi_2+0)+\frac{1}{\sqrt{3}}(\psi_2\psi_1+0+\psi_1\psi_2)+\frac{1}{\sqrt{3}}(0+\psi_2\psi_1+\psi_2\psi_1)\right)\\=&\psi_1\psi_2+\psi_2\psi_1\\=&\sqrt{2}|1_1,1_2\rangle.\end{array}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)