Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Selection rule
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Angular momentum === {{See also|angular momentum coupling}} In general, electric (charge) radiation or magnetic (current, magnetic moment) radiation can be classified into [[multipole moments|multipoles]] E{{mvar|λ}} (electric) or M{{mvar|λ}} (magnetic) of order 2<sup>{{mvar|λ}}</sup>, e.g., E1 for electric [[dipole]], E2 for [[quadrupole]], or E3 for octupole. In transitions where the change in angular momentum between the initial and final states makes several multipole radiations possible, usually the lowest-order multipoles are overwhelmingly more likely, and dominate the transition.<ref>{{cite book |last=Softley |first=T. P. |title=Atomic Spectra |publisher=[[Oxford University Press]] |location=Oxford, UK |date=1994 |isbn=0-19-855688-8}}</ref> The emitted particle carries away angular momentum, with quantum number {{mvar|λ}}, which for the photon must be at least 1, since it is a vector particle (i.e., it has [[total angular momentum quantum number|{{mvar|J}}]]<sup>[[Parity (physics)|{{mvar|P}}]]</sup> = 1<sup>−</sup>). Thus, there is no radiation from E0 (electric monopoles) or M0 ([[magnetic monopole]]s, which do not seem to exist). Since the total angular momentum has to be conserved during the transition, we have that : <math>\mathbf J_\text{i} = \mathbf{J}_\text{f} + \boldsymbol{\lambda},</math> where <math>\|\boldsymbol{\lambda}\| = \sqrt{\lambda(\lambda + 1)} \, \hbar,</math> and its {{mvar|z}} projection is given by <math>\lambda_z = \mu \hbar;</math> and where <math>\mathbf J_\text{i}</math> and <math>\mathbf J_\text{f}</math> are, respectively, the initial and final angular momenta of the atom. The corresponding quantum numbers {{mvar|λ}} and {{mvar|μ}} ({{mvar|z}}-axis angular momentum) must satisfy : <math>|J_\text{i} - J_\text{f}| \le \lambda \le J_\text{i} + J_\text{f}</math> and : <math>\mu = M_\text{i} - M_\text{f}.</math> Parity is also preserved. For electric multipole transitions : <math>\pi(\mathrm{E}\lambda) = \pi_\text{i} \pi_\text{f} = (-1)^{\lambda},</math> while for magnetic multipoles : <math>\pi(\mathrm{M}\lambda) = \pi_\text{i} \pi_\text{f} = (-1)^{\lambda+1}.</math> Thus, parity does not change for E-even or M-odd multipoles, while it changes for E-odd or M-even multipoles. {{anchor|anchor_forbidden_trans}}These considerations generate different sets of transitions rules depending on the multipole order and type. The expression ''[[forbidden transition]]s'' is often used, but this does not mean that these transitions ''cannot'' occur, only that they are ''electric-dipole-forbidden''. These transitions are perfectly possible; they merely occur at a lower rate. If the rate for an E1 transition is non-zero, the transition is said to be permitted; if it is zero, then M1, E2, etc. transitions can still produce radiation, albeit with much lower transitions rates. The transition rate decreases by a factor of about 1000 from one multipole to the next one, so the lowest multipole transitions are most likely to occur.<ref>{{cite book |last1=Condon |first1=E. V. |last2=Shortley |first2=G. H. |orig-year=1935 |title=The Theory of Atomic Spectra |url=https://archive.org/details/in.ernet.dli.2015.212979 |publisher=Cambridge University Press |isbn=0-521-09209-4<!-- reprint --> |year=1999<!-- reprint -->}}</ref> Semi-forbidden transitions (resulting in so-called intercombination lines) are electric dipole (E1) transitions for which the selection rule that the spin does not change is violated. This is a result of the failure of [[LS coupling]]. ==== Summary table ==== <math>J = L + S</math> is the total angular momentum, <math>L</math> is the [[azimuthal quantum number]], <math>S</math> is the [[spin quantum number]], and <math>M_J</math> is the [[Total angular momentum quantum number|secondary total angular momentum quantum number]]. Which transitions are allowed is based on the [[hydrogen-like atom]]. The symbol <math>\not\leftrightarrow</math> is used to indicate a forbidden transition. {| class="wikitable" style="text-align:center" |- ! colspan=2 | Allowed transitions ! Electric dipole (E1) ! Magnetic dipole (M1) ! Electric quadrupole (E2) ! Magnetic quadrupole (M2) ! Electric octupole (E3) ! Magnetic octupole (M3) |- ! rowspan=3 | Rigorous rules ! (1) | colspan=2 | <math>\begin{matrix} \Delta J = 0, \pm 1 \\ (J = 0 \not \leftrightarrow 0)\end{matrix}</math> | colspan=2 | <math>\begin{matrix} \Delta J = 0, \pm 1, \pm 2 \\ (J = 0 \not \leftrightarrow 0, 1;\ \begin{matrix}{1 \over 2}\end{matrix} \not \leftrightarrow \begin{matrix}{1 \over 2}\end{matrix})\end{matrix}</math> | colspan=2 | <math>\begin{matrix}\Delta J = 0, \pm1, \pm2, \pm 3 \\ (0 \not \leftrightarrow 0, 1, 2;\ \begin{matrix}{1 \over 2}\end{matrix} \not \leftrightarrow \begin{matrix}{1 \over 2} \end{matrix}, \begin{matrix}{3 \over 2}\end{matrix};\ 1 \not \leftrightarrow 1) \end{matrix}</math> |- ! (2) | colspan=2 | <math>\Delta M_J = 0, \pm 1 \ (M_J = 0 \not \leftrightarrow 0</math> if <math>\Delta J=0)</math> | colspan=2 | <math>\Delta M_J = 0, \pm 1, \pm2</math> | colspan=2 | <math>\Delta M_J = 0, \pm 1, \pm2, \pm 3</math> |- ! (3) | <math>\pi_\text{f} = -\pi_\text{i}</math> | colspan=2 | <math>\pi_\text{f} = \pi_\text{i}</math> | colspan=2 | <math>\pi_\text{f} = -\pi_\text{i}</math> | <math>\pi_\text{f} = \pi_\text{i}</math> |- ! rowspan=2 | LS coupling ! (4) | One-electron jump<br/><math>\Delta L = \pm 1</math> | No electron jump<br/><math>\Delta L = 0</math>,<br><math>\Delta n = 0</math> | None or one-electron jump<br/><math>\Delta L = 0, \pm 2</math> | One-electron jump<br/><math>\Delta L = \pm 1</math> | One-electron jump<br/><math>\Delta L = \pm 1, \pm 3</math> | One-electron jump<br/><math>\Delta L = 0, \pm 2</math> |- ! (5) | If <math>\Delta S = 0</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1 \\ (L = 0 \not \leftrightarrow 0)\end{matrix}</math> | If <math>\Delta S = 0</math>:<br/><math>\Delta L = 0\,</math> | colspan=2 | If <math>\Delta S = 0</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1, \pm 2 \\ (L = 0 \not \leftrightarrow 0, 1)\end{matrix}</math> | colspan=2 | If <math>\Delta S = 0</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1, \pm 2, \pm 3 \\ (L=0 \not \leftrightarrow 0, 1, 2;\ 1 \not \leftrightarrow 1)\end{matrix}</math> |- ! Intermediate coupling ! (6) | colspan=2 | If <math>\Delta S = \pm 1</math>:<br/><math>\Delta L = 0, \pm 1, \pm 2\,</math> | If <math>\Delta S = \pm 1</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1, \\ \pm 2, \pm 3 \\ (L = 0 \not \leftrightarrow 0)\end{matrix}</math> | If <math>\Delta S = \pm 1</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1 \\ (L = 0 \not \leftrightarrow 0)\end{matrix}</math> | If <math>\Delta S = \pm 1</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1, \\ \pm 2, \pm 3, \pm 4 \\ (L = 0 \not \leftrightarrow 0, 1)\end{matrix}</math> | If <math>\Delta S = \pm 1</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1, \\ \pm 2 \\ (L = 0 \not \leftrightarrow 0)\end{matrix}</math> |} In [[hyperfine structure]], the total angular momentum of the atom is <math>F = I + J,</math> where <math>I</math> is the [[Quantum number#Nuclear angular momentum quantum numbers|nuclear spin angular momentum]] and <math>J</math> is the total angular momentum of the electron(s). Since <math>F = I + J</math> has a similar mathematical form as <math>J = L + S,</math> it obeys a selection rule table similar to the table above.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)