Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Semantic similarity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== In natural language processing === [[Natural language processing]] (NLP) is a field of computer science and linguistics. Sentiment analysis, Natural language understanding and Machine translation (Automatically translate text from one human language to another) are a few of the major areas where it is being used. For example, knowing one information resource in the internet, it is often of immediate interest to find similar resources. The [[Semantic Web]] provides semantic extensions to find similar data by content and not just by arbitrary descriptors.<ref>[http://www.di.uniba.it/~cdamato/PhDThesis_dAmato.pdf Similarity-based Learning Methods for the Semantic Web] (C. d'Amato, PhD Thesis)</ref><ref>{{cite journal|author1=Gracia, J. |author2=Mena, E. |name-list-style=amp |year=2008|url=http://disi.unitn.it/~p2p/RelatedWork/Matching/Gracia_wise08.pdf|title=Web-Based Measure of Semantic Relatedness|journal=Proceedings of the 9th International Conference on Web Information Systems Engineering (WISE '08)|pages=136β150}}</ref><ref>Raveendranathan, P. (2005). [http://www.d.umn.edu/~tpederse/Pubs/prath-thesis.pdf Identifying Sets of Related Words from the World Wide Web]. Master of Science Thesis, University of Minnesota Duluth.</ref><ref>Wubben, S. (2008). [http://ilk.uvt.nl/~swubben/publications/wubben2008-techrep.pdf Using free link structure to calculate semantic relatedness]. In ILK Research Group Technical Report Series, nr. 08-01, 2008.</ref><ref>Juvina, I., van Oostendorp, H., Karbor, P., & Pauw, B. (2005). [https://cloudfront.escholarship.org/dist/prd/content/qt0p7528tp/qt0p7528tp.pdf Towards modeling contextual information in web navigation]. In B. G. Bara & L. Barsalou & M. Bucciarelli (Eds.), 27th Annual Meeting of the Cognitive Science Society, CogSci2005 (pp. 1078β1083). Austin, Tx: The Cognitive Science Society, Inc.</ref><ref>Navigli, R., Lapata, M. (2007). [http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-272.pdf Graph Connectivity Measures for Unsupervised Word Sense Disambiguation], Proc. of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India, January 6β12th, 2007, pp. 1683β1688.</ref><ref>{{cite journal|author=Pirolli, P.|year=2005|title=Rational analyses of information foraging on the Web|journal=Cognitive Science|volume=29|issue=3|pages=343β373|doi=10.1207/s15516709cog0000_20|pmid=21702778|doi-access=free}}</ref><ref>{{cite book|author=Pirolli, P.|author2=Fu, W.-T.|name-list-style=amp |year=2003|chapter=SNIF-ACT: A model of information foraging on the World Wide Web|title=Lecture Notes in Computer Science|volume=2702|pages=45β54|doi=10.1007/3-540-44963-9_8|isbn=978-3-540-40381-4|citeseerx=10.1.1.6.1506}}</ref><ref>Turney, P. (2001). [https://arxiv.org/abs/cs/0212033 Mining the Web for Synonyms: PMI versus LSA on TOEFL]. In L. De Raedt & P. Flach (Eds.), Proceedings of the Twelfth European Conference on Machine Learning (ECML-2001) (pp. 491β502). Freiburg, Germany.</ref> [[Deep learning]] methods have become an accurate way to gauge semantic similarity between two text passages, in which each passage is first embedded into a continuous vector representation.<ref>{{Cite book|last1=Reimers|first1=Nils|last2=Gurevych|first2=Iryna|title=Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |chapter=Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks |date=November 2019|chapter-url=https://www.aclweb.org/anthology/D19-1410|location=Hong Kong, China|publisher=Association for Computational Linguistics|pages=3982β3992|doi=10.18653/v1/D19-1410|arxiv=1908.10084|doi-access=free}}</ref><ref>{{Cite journal|last1=Mueller|first1=Jonas|last2=Thyagarajan|first2=Aditya|date=2016-03-05|title=Siamese Recurrent Architectures for Learning Sentence Similarity|url=https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12195|journal=Thirtieth AAAI Conference on Artificial Intelligence|volume=30 |doi=10.1609/aaai.v30i1.10350 |s2cid=16657628 |language=en|doi-access=free}}</ref><ref>{{Citation|last1=Kiros|first1=Ryan|title=Skip-Thought Vectors|date=2015|url=http://papers.nips.cc/paper/5950-skip-thought-vectors.pdf|work=Advances in Neural Information Processing Systems 28|pages=3294β3302|editor-last=Cortes|editor-first=C.|publisher=Curran Associates, Inc.|access-date=2020-03-13|last2=Zhu|first2=Yukun|last3=Salakhutdinov|first3=Russ R|last4=Zemel|first4=Richard|last5=Urtasun|first5=Raquel|last6=Torralba|first6=Antonio|last7=Fidler|first7=Sanja|editor2-last=Lawrence|editor2-first=N. D.|editor3-last=Lee|editor3-first=D. D.|editor4-last=Sugiyama|editor4-first=M.}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)