Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sheffer stroke
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Functional completeness=== The Sheffer stroke, taken by itself, is a [[Functional completeness|functionally complete]] set of connectives.<ref name=":18">{{Cite web |last=Weisstein |first=Eric W. |title=Propositional Calculus |url=https://mathworld.wolfram.com/ |access-date=2024-03-22 |website=mathworld.wolfram.com |language=en}}</ref><ref name=":2">{{Citation |last=Franks |first=Curtis |title=Propositional Logic |date=2023 |editor-last=Zalta |editor-first=Edward N. |url=https://plato.stanford.edu/archives/fall2023/entries/logic-propositional/ |access-date=2024-03-22 |edition=Fall 2023 |publisher=Metaphysics Research Lab, Stanford University |editor2-last=Nodelman |editor2-first=Uri |encyclopedia=The Stanford Encyclopedia of Philosophy}}</ref> This can be seen from the fact that NAND does not possess any of the following five properties, each of which is required to be absent from, and the absence of all of which is sufficient for, at least one member of a set of [[functionally complete]] operators: truth-preservation, falsity-preservation, [[affine transformation|linearity]], [[monotonic]]ity, [[self-duality]]. (An operator is truth-preserving if its value is truth whenever all of its arguments are truth, or falsity-preserving if its value is falsity whenever all of its arguments are falsity.)<ref>{{cite book | url=https://dokumen.pub/qdownload/the-two-valued-iterative-systems-of-mathematical-logic-am-5-volume-5-9781400882366.html | isbn=9781400882366 | doi=10.1515/9781400882366 | author=Emil Leon Post | title=The Two-Valued Iterative Systems of Mathematical Logic | location=Princeton | publisher=Princeton University Press | series=Annals of Mathematics studies | volume=5 | date=1941 }}</ref> It can also be proved by first showing, with a [[truth table]], that <math>\neg A</math> is truth-functionally equivalent to <math>A \uparrow A</math>.<ref name=":132">{{Cite book |last=Howson |first=Colin |title=Logic with trees: an introduction to symbolic logic |date=1997 |publisher=Routledge |isbn=978-0-415-13342-5 |location=London; New York |pages=41β43}}</ref> Then, since <math>A \uparrow B</math> is truth-functionally equivalent to <math>\neg (A \land B)</math>,<ref name=":132" /> and <math>A \lor B</math> is equivalent to <math>\neg(\neg A \land \neg B)</math>,<ref name=":132" /> the Sheffer stroke suffices to define the set of connectives <math>\{\land, \lor, \neg\}</math>,<ref name=":132" /> which is shown to be truth-functionally complete by the [[Disjunctive Normal Form Theorem]].<ref name=":132" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)