Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Singular value decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Example == Consider the {{tmath|4 \times 5}} matrix <math display=block> \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix} </math> A singular value decomposition of this matrix is given by {{tmath|\mathbf U\mathbf \Sigma \mathbf V^*}} <math display=block>\begin{align} \mathbf{U} &= \begin{bmatrix} \color{Green}0 & \color{Blue}-1 & \color{Cyan}0 & \color{Emerald}0 \\ \color{Green}-1 & \color{Blue}0 & \color{Cyan}0 & \color{Emerald}0 \\ \color{Green}0 & \color{Blue}0 & \color{Cyan}0 & \color{Emerald}-1 \\ \color{Green}0 & \color{Blue}0 & \color{Cyan}-1 & \color{Emerald}0 \end{bmatrix} \\[6pt] \mathbf \Sigma &= \begin{bmatrix} 3 & 0 & 0 & 0 & \color{Gray}\mathit{0} \\ 0 & \sqrt{5} & 0 & 0 & \color{Gray}\mathit{0} \\ 0 & 0 & 2 & 0 & \color{Gray}\mathit{0} \\ 0 & 0 & 0 & \color{Red}\mathbf{0} & \color{Gray}\mathit{0} \end{bmatrix} \\[6pt] \mathbf{V}^* &= \begin{bmatrix} \color{Violet}0 & \color{Violet}0 & \color{Violet}-1 & \color{Violet}0 &\color{Violet}0 \\ \color{Plum}-\sqrt{0.2}& \color{Plum}0 & \color{Plum}0 & \color{Plum}0 &\color{Plum}-\sqrt{0.8} \\ \color{Magenta}0 & \color{Magenta}-1 & \color{Magenta}0 & \color{Magenta}0 &\color{Magenta}0 \\ \color{Orchid}0 & \color{Orchid}0 & \color{Orchid}0 & \color{Orchid}1 &\color{Orchid}0 \\ \color{Purple} - \sqrt{0.8} & \color{Purple}0 & \color{Purple}0 & \color{Purple}0 & \color{Purple}\sqrt{0.2} \end{bmatrix} \end{align}</math> The scaling matrix {{tmath|\mathbf \Sigma}} is zero outside of the diagonal (grey italics) and one diagonal element is zero (red bold, light blue bold in dark mode). Furthermore, because the matrices {{tmath|\mathbf U}} and {{tmath|\mathbf V^*}} are [[unitary matrix|unitary]], multiplying by their respective conjugate transposes yields [[identity matrix|identity matrices]], as shown below. In this case, because {{tmath|\mathbf U}} and {{tmath|\mathbf V^*}} are real valued, each is an [[orthogonal matrix]]. <math display=block>\begin{align} \mathbf{U} \mathbf{U}^* &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{I}_4 \\[6pt] \mathbf{V} \mathbf{V}^* &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{I}_5 \end{align}</math> This particular singular value decomposition is not unique. For instance, we can keep {{tmath|\mathbf U}} and {{tmath|\mathbf \Sigma}} the same, but change the last two rows of {{tmath|\mathbf V^*}} such that <math display=block>\mathbf{V}^* = \begin{bmatrix} \color{Violet}0 & \color{Violet}0 & \color{Violet}-1 & \color{Violet}0 &\color{Violet}0 \\ \color{Plum}-\sqrt{0.2}& \color{Plum}0 & \color{Plum}0 & \color{Plum}0 &\color{Plum}-\sqrt{0.8} \\ \color{Magenta}0 & \color{Magenta}-1 & \color{Magenta}0 & \color{Magenta}0 &\color{Magenta}0 \\ \color{Orchid}\sqrt{0.4} & \color{Orchid}0 & \color{Orchid}0 & \color{Orchid}\sqrt{0.5} & \color{Orchid}-\sqrt{0.1} \\ \color{Purple}-\sqrt{0.4} & \color{Purple}0 & \color{Purple}0 & \color{Purple}\sqrt{0.5} & \color{Purple}\sqrt{0.1} \end{bmatrix}</math> and get an equally valid singular value decomposition. As the matrix {{tmath|\mathbf M}} has rank 3, it has only 3 nonzero singular values. In taking the product {{tmath|\mathbf{U}\mathbf{\Sigma} \mathbf{V}^* }}, the final column of {{tmath|\mathbf U}} and the final two rows of {{tmath|\mathbf{V^*} }} are multiplied by zero, so have no effect on the matrix product, and can be replaced by any unit vectors which are orthogonal to the first three and to each-other. The [[#Compact SVD|compact SVD]], {{tmath|1= \mathbf M = \mathbf{U}_r\mathbf{\Sigma}_r \mathbf{V}_r^* }}, eliminates these superfluous rows, columns, and singular values: <math display=block>\begin{align} \mathbf{U}_r &= \begin{bmatrix} \color{Green}0 & \color{Blue}-1 & \color{Cyan}0 \\ \color{Green}-1 & \color{Blue}0 & \color{Cyan}0 \\ \color{Green}0 & \color{Blue}0 & \color{Cyan}0 \\ \color{Green}0 & \color{Blue}0 & \color{Cyan}-1 \end{bmatrix} \\[6pt] \mathbf \Sigma_r &= \begin{bmatrix} 3 & 0 & 0 \\ 0 & \sqrt{5} & 0 \\ 0 & 0 & 2 \end{bmatrix} \\[6pt] \mathbf{V}^*_r &= \begin{bmatrix} \color{Violet}0 & \color{Violet}0 & \color{Violet}-1 & \color{Violet}0 &\color{Violet}0 \\ \color{Plum}-\sqrt{0.2}& \color{Plum}0 & \color{Plum}0 & \color{Plum}0 &\color{Plum}-\sqrt{0.8} \\ \color{Magenta}0 & \color{Magenta}-1 & \color{Magenta}0 & \color{Magenta}0 &\color{Magenta}0 \end{bmatrix} \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)