Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Singularity (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Finite-time singularity== [[File:Rectangular hyperbola.svg|thumb|The [[reciprocal function]], exhibiting [[hyperbolic growth]].]]<!-- A better image would be 1/(1-x) or similar, showing a positive singular point and growth as x increases --> A '''finite-time singularity''' occurs when one input variable is time, and an output variable increases towards infinity at a finite time. These are important in [[kinematic]]s and [[Partial Differential Equation]]s – infinites do not occur physically, but the behavior near the singularity is often of interest. Mathematically, the simplest finite-time singularities are [[power law]]s for various exponents of the form <math>x^{-\alpha},</math> of which the simplest is [[hyperbolic growth]], where the exponent is (negative) 1: <math>x^{-1}.</math> More precisely, in order to get a singularity at positive time as time advances (so the output grows to infinity), one instead uses <math>(t_0-t)^{-\alpha}</math> (using ''t'' for time, reversing direction to <math>-t</math> so that time increases to infinity, and shifting the singularity forward from 0 to a fixed time <math>t_0</math>). An example would be the bouncing motion of an inelastic ball on a plane. If idealized motion is considered, in which the same fraction of [[kinetic energy]] is lost on each bounce, the [[frequency]] of bounces becomes infinite, as the ball comes to rest in a finite time. Other examples of finite-time singularities include the various forms of the [[Painlevé paradox]] (for example, the tendency of a chalk to skip when dragged across a blackboard), and how the [[precession]] rate of a [[coin]] spun on a flat surface accelerates towards infinite—before abruptly stopping (as studied using the [[Euler's Disk]] toy). Hypothetical examples include [[Heinz von Foerster]]'s facetious "[[Heinz von Foerster#Doomsday equation|Doomsday's equation]]" (simplistic models yield infinite human population in finite time).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)