Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Square matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Definite matrix=== {| class="wikitable" style="float:right; text-align:center; margin:0ex 0ex 2ex 2ex;" |- ! [[Positive definite matrix|Positive definite]] !! [[Indefinite matrix|Indefinite]] |- | <math> \begin{bmatrix} 1/4 & 0 \\ 0 & 1 \\ \end{bmatrix} </math> | <math> \begin{bmatrix} 1/4 & 0 \\ 0 & -1/4 \end{bmatrix} </math> |- | {{math|1=''Q''(''x'',''y'') = 1/4 ''x''<sup>2</sup> + ''y''<sup>2</sup>}} | {{math|1=''Q''(''x'',''y'') = 1/4 ''x''<sup>2</sup> β 1/4 ''y''<sup>2</sup>}} |- | [[File:Ellipse in coordinate system with semi-axes labelled.svg|150px]] <br>Points such that {{math|1=''Q''(''x'', ''y'') = 1}} <br> ([[Ellipse]]). | [[File:Hyperbola2 SVG.svg|100x100px]] <br> Points such that {{math|1=''Q''(''x'', ''y'') = 1}} <br> ([[Hyperbola]]). |} A symmetric {{math|''n''Γ''n''}}-matrix is called ''[[positive-definite matrix|positive-definite]]'' (respectively negative-definite; indefinite), if for all nonzero vectors <math>x \in \mathbb{R}^n</math> the associated [[quadratic form]] given by <math display="block" id="quadratic_forms">Q(\mathbf{x}) = \mathbf{x}^\mathsf{T} A \mathbf{x}</math> takes only positive values (respectively only negative values; both some negative and some positive values).<ref>{{Harvard citations |last1=Horn |last2=Johnson |year=1985 |nb=yes |loc=Chapter 7 }}</ref> If the quadratic form takes only non-negative (respectively only non-positive) values, the symmetric matrix is called positive-semidefinite (respectively negative-semidefinite); hence the matrix is indefinite precisely when it is neither positive-semidefinite nor negative-semidefinite. A symmetric matrix is positive-definite if and only if all its eigenvalues are positive.<ref>{{Harvard citations |last1=Horn |last2=Johnson |year=1985 |nb=yes |loc=Theorem 7.2.1 }}</ref> The table at the right shows two possibilities for 2Γ2 matrices. Allowing as input two different vectors instead yields the [[bilinear form]] associated to {{mvar|A}}:<ref>{{Harvard citations |last1=Horn |last2=Johnson |year=1985 |nb=yes |loc=Example 4.0.6, p. 169 }}</ref> <math display="block">B_A(\mathbf{x}, \mathbf{y}) = \mathbf{x}^\mathsf{T} A \mathbf{y}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)