Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Squeeze theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Fourth example === The squeeze theorem can still be used in multivariable calculus but the lower (and upper functions) must be below (and above) the target function not just along a path but around the entire neighborhood of the point of interest and it only works if the function really does have a limit there. It can, therefore, be used to prove that a function has a limit at a point, but it can never be used to prove that a function does not have a limit at a point.<ref>{{cite book|chapter=Chapter 15.2 Limits and Continuity| pages=909β910|title=Multivariable Calculus|year=2008|last1=Stewart|first1=James| author-link1=James Stewart (mathematician)| edition=6th|isbn=978-0495011637}}</ref> <math display="block">\lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2}</math> cannot be found by taking any number of limits along paths that pass through the point, but since <math display="block">\begin{array}{rccccc} & 0 & \leq & \displaystyle \frac{x^2}{x^2+y^2} & \leq & 1 \\[4pt] -|y| \leq y \leq |y| \implies & -|y| & \leq & \displaystyle \frac{x^2 y}{x^2+y^2} & \leq & |y| \\[4pt] { {\displaystyle \lim_{(x,y) \to (0, 0)} -|y| = 0} \atop {\displaystyle \lim_{(x,y) \to (0, 0)} \ \ \ |y| = 0} } \implies & 0 & \leq & \displaystyle \lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2} & \leq & 0 \end{array}</math> therefore, by the squeeze theorem, <math display="block">\lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2} = 0.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)