Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stirling number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Inversion relations and the Stirling transform== For any pair of sequences, <math>\{f_n\}</math> and <math>\{g_n\}</math>, related by a finite sum Stirling number formula given by :<math>g_n = \sum_{k=0}^{n} \left\{\begin{matrix} n \\ k \end{matrix} \right\} f_k, </math> for all integers <math>n \geq 0</math>, we have a corresponding [[generating function transformation#Inversion relations and generating function identities|inversion formula]] for <math>f_n</math> given by :<math>f_n = \sum_{k=0}^{n} \left[\begin{matrix} n \\ k \end{matrix} \right] (-1)^{n-k} g_k. </math> The lower indices could be any integer between <math display="inline">0</math> and <math display="inline">n</math>. These inversion relations between the two sequences translate into functional equations between the sequence [[generating function|exponential generating functions]] given by the [[Stirling transform|Stirling (generating function) transform]] as :<math>\widehat{G}(z) = \widehat{F}\left(e^z-1\right)</math> and :<math>\widehat{F}(z) = \widehat{G}\left(\log(1+z)\right). </math> For <math>D = d/dx</math>, the [[differential operators]] <math>x^nD^n</math> and <math>(xD)^n</math> are related by the following formulas for all integers <math>n \geq 0</math>:<ref>''Concrete Mathematics'' exercise 13 of section 6. Note that this formula immediately implies the first positive-order Stirling number transformation given in the main article on [[generating function transformation#Derivative transformations|generating function transformations]].</ref> :<math> \begin{align} (xD)^n &= \sum_{k=0}^n S(n, k) x^k D^k \\ x^n D^n &= \sum_{k=0}^n s(n, k) (xD)^k = (xD)_n = xD(xD - 1)\ldots (xD - n + 1) \end{align} </math> Another pair of "''inversion''" relations involving the [[Stirling numbers]] relate the [[finite difference|forward differences]] and the ordinary <math>n^{th}</math> [[derivative]]s of a function, <math>f(x)</math>, which is analytic for all <math>x</math> by the formulas<ref>{{cite journal|last1=Olver|first1=Frank|first2=Daniel|last2=Lozier|first3=Ronald|last3=Boisvert|first4=Charles|last4=Clark|title=NIST Handbook of Mathematical Functions|journal=NIST Handbook of Mathematical Functions|date=2010|url=https://www.nist.gov/publications/nist-handbook-mathematical-functions}} (Section 26.8)</ref> :<math>\frac{1}{k!} \frac{d^k}{dx^k} f(x) = \sum_{n=k}^{\infty} \frac{s(n, k)}{n!} \Delta^n f(x)</math> :<math>\frac{1}{k!} \Delta^k f(x) = \sum_{n=k}^{\infty} \frac{S(n, k)}{n!} \frac{d^n}{dx^n} f(x). </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)