Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stokes parameters
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== For purely [[monochromatic]] [[Coherence (physics)|coherent]] radiation, it follows from the above equations that :<math> Q^2+U^2+V^2 = I^2, </math> whereas for the whole (non-coherent) beam radiation, the Stokes parameters are defined as averaged quantities, and the previous equation becomes an inequality:<ref>H. C. van de Hulst ''Light scattering by small particles'', Dover Publications, New York, 1981, {{ISBN|0-486-64228-3}}, page 42</ref> :<math> Q^2+U^2+V^2 \le I^2. </math> However, we can define a total polarization intensity <math>I_p</math>, so that :<math> Q^{2} + U^2 +V^2 = I_p^2, </math> where <math>I_p/I</math> is the total polarization fraction. Let us define the complex intensity of linear polarization to be :<math> \begin{align} L & \equiv |L|e^{i2\theta} \\ & \equiv Q +iU. \\ \end{align} </math> Under a rotation <math>\theta \rightarrow \theta+\theta'</math> of the polarization ellipse, it can be shown that <math>I</math> and <math>V</math> are invariant, but :<math> \begin{align} L & \rightarrow e^{i2\theta'}L, \\ Q & \rightarrow \mbox{Re}\left(e^{i2\theta'}L\right), \\ U & \rightarrow \mbox{Im}\left(e^{i2\theta'}L\right).\\ \end{align} </math> With these properties, the Stokes parameters may be thought of as constituting three generalized intensities: :<math> \begin{align} I & \ge 0, \\ V & \in \mathbb{R}, \\ L & \in \mathbb{C}, \\ \end{align} </math> where <math>I</math> is the total intensity, <math>|V|</math> is the intensity of circular polarization, and <math>|L|</math> is the intensity of linear polarization. The total intensity of polarization is <math>I_p=\sqrt{|L|^2+|V|^2}</math>, and the orientation and sense of rotation are given by :<math> \begin{align} \theta &= \frac{1}{2}\arg(L), \\ h &= \sgn(V). \\ \end{align} </math> Since <math>Q=\mbox{Re}(L)</math> and <math>U=\mbox{Im}(L)</math>, we have :<math> \begin{align} |L| &= \sqrt{Q^2+U^2}, \\ \theta &= \frac{1}{2}\tan^{-1}(U/Q). \\ \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)