Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Temporal logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Syntax and semantics === A minimal syntax for TL is specified with the following [[Backus–Naur form|BNF grammar]]: :<math>\phi ::= a \;|\; \bot \;|\; \lnot\phi \;|\; \phi\lor\phi \;|\; G\phi \;|\; H\phi</math> where ''a'' is some [[atomic formula]].<ref>{{Cite book|url=https://plato.stanford.edu/archives/win2015/entries/logic-temporal/|title=The Stanford Encyclopedia of Philosophy|last1=Goranko|first1=Valentin|last2=Galton|first2=Antony|chapter=Temporal Logic |date=2015|publisher=Metaphysics Research Lab, Stanford University|editor-last=Zalta|editor-first=Edward N.|edition=Winter 2015}}</ref> [[Kripke model]]s are used to evaluate the truth of [[Sentence (mathematical logic)|sentences]] in TL. A pair ({{Var|T}}, <) of a set {{Var|T}} and a [[binary relation]] < on {{Var|T}} (called "precedence") is called a '''frame'''. A '''model''' is given by triple ({{Var|T}}, <, {{Var|V}}) of a frame and a function {{Var|V}} called a '''valuation''' that assigns to each pair ({{Var|a}}, {{Var|u}}) of an atomic formula and a time value some truth value. The notion "{{Var|ϕ}} is true in a model {{Var|U}}=({{Var|T}}, <, {{Var|V}}) at time {{Var|u}}" is abbreviated {{var|U}}[[Double turnstile|⊨]]{{var|ϕ}}[{{var|u}}]. With this notation,<ref>{{Cite book|title=The continuum companion to philosophical logic|last=Müller|first=Thomas|publisher=A&C Black|year=2011|editor-last=Horsten|editor-first=Leon|pages=329|chapter=Tense or temporal logic|chapter-url=http://kops.uni-konstanz.de/bitstream/handle/123456789/27232/Mueller_272322.pdf?sequence=2}}</ref> {| class="wikitable" |+ ! Statement ! ... is true just when |- | {{var|U}}⊨{{var|a}}[{{var|u}}] | {{var|V}}({{var|a}},{{var|u}})=true |- | {{var|U}}⊨¬{{var|ϕ}}[{{var|u}}] | not {{var|U}}⊨{{var|ϕ}}[{{var|u}}] |- | {{var|U}}⊨({{var|ϕ}}∧{{var|ψ}})[{{var|u}}] | {{var|U}}⊨{{var|ϕ}}[{{var|u}}] and {{var|U}}⊨{{var|ψ}}[{{var|u}}] |- | {{var|U}}⊨({{var|ϕ}}∨{{var|ψ}})[{{var|u}}] | {{var|U}}⊨{{var|ϕ}}[{{var|u}}] or {{var|U}}⊨{{var|ψ}}[{{var|u}}] |- | {{var|U}}⊨({{var|ϕ}}→{{var|ψ}})[{{var|u}}] | {{var|U}}⊨{{var|ψ}}[{{var|u}}] if {{var|U}}⊨{{var|ϕ}}[{{var|u}}] |- | {{var|U}}⊨G{{var|ϕ}}[{{var|u}}] | {{var|U}}⊨{{var|ϕ}}[{{var|v}}] for all {{var|v}} with {{var|u}}<{{var|v}} |- | {{var|U}}⊨H{{var|ϕ}}[{{var|u}}] | {{var|U}}⊨{{var|ϕ}}[{{var|v}}] for all {{var|v}} with {{var|v}}<{{var|u}} |} Given a class {{var|F}} of frames, a sentence {{var|ϕ}} of TL is * '''valid''' with respect to {{var|F}} if for every model {{var|U}}=({{var|T}},<,{{var|V}}) with ({{var|T}},<) in {{var|F}} and for every {{var|u}} in {{var|T}}, {{var|U}}⊨{{var|ϕ}}[{{var|u}}] * '''satisfiable''' with respect to {{var|F}} if there is a model {{var|U}}=({{var|T}},<,{{var|V}}) with ({{var|T}},<) in {{var|F}} such that for some {{var|u}} in {{var|T}}, {{var|U}}⊨{{var|ϕ}}[{{var|u}}] * a '''consequence''' of a sentence {{var|ψ}} with respect to {{var|F}} if for every model {{var|U}}=({{var|T}},<,{{var|V}}) with ({{var|T}},<) in {{var|F}} and for every {{var|u}} in {{var|T}}, if {{var|U}}⊨{{var|ψ}}[{{var|u}}], then {{var|U}}⊨{{var|ϕ}}[{{var|u}}] Many sentences are only valid for a limited class of frames. It is common to restrict the class of frames to those with a relation < that is [[Transitive reduction|transitive]], [[Antisymmetric relation|antisymmetric]], [[Reflexive relation|reflexive]], [[Trichotomy (mathematics)|trichotomic]], [[irreflexive]], [[Total order|total]], [[Dense order|dense]], or some combination of these.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)