Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Three utilities problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Rigidity=== The utility graph <math>K_{3,3}</math> is a [[Laman graph]], meaning that for [[almost all]] placements of its vertices in the plane, there is no way to continuously move its vertices while preserving all edge lengths, other than by a [[Rigid transformation|rigid motion]] of the whole plane, and that none of its [[spanning subgraph]]s have the same [[rigid system|rigidity]] property. It is the smallest example of a nonplanar Laman graph.{{r|streinu}} Despite being a minimally rigid graph, it has non-rigid embeddings with special placements for its vertices.{{r|dixon|wh07}} For general-position embeddings, a [[polynomial equation]] describing all possible placements with the same edge lengths has degree 16, meaning that in general there can be at most 16 placements with the same lengths. It is possible to find systems of edge lengths for which up to eight of the solutions to this equation describe realizable placements.{{r|wh07}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)