Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Triangle inequality
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Relationship with shortest paths==== [[File:Arclength.svg|300px|thumb|The arc length of a curve is defined as the least upper bound of the lengths of polygonal approximations.]] This generalization can be used to prove that the shortest curve between two points in Euclidean geometry is a straight line. No polygonal path between two points is shorter than the line between them. This implies that no curve can have an [[arc length]] less than the distance between its endpoints. By definition, the arc length of a curve is the [[least upper bound]] of the lengths of all polygonal approximations of the curve. The result for polygonal paths shows that the straight line between the endpoints is the shortest of all the polygonal approximations. Because the arc length of the curve is greater than or equal to the length of every polygonal approximation, the curve itself cannot be shorter than the straight line path.<ref>{{cite book|title=Numbers and Geometry|author=John Stillwell|author-link=John Stillwell|year=1997|publisher=Springer|isbn=978-0-387-98289-2|url=https://books.google.com/books?id=4elkHwVS0eUC&pg=PA95}} p. 95.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)