Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uniform convergence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Exponential function === The series expansion of the [[exponential function]] can be shown to be uniformly convergent on any bounded subset <math>S \subset \C</math> using the [[Weierstrass M-test]]. '''Theorem (Weierstrass M-test).''' ''Let <math>(f_n)</math> be a sequence of functions <math>f_n:E\to \C</math> and let <math>M_n </math> be a sequence of positive real numbers such that <math>|f_n(x)|\le M_n</math> for all <math>x\in E</math> and <math>n=1,2, 3, \ldots</math> If <math display="inline">\sum_n M_n</math> converges, then <math display="inline">\sum_n f_n</math> converges absolutely and uniformly on <math>E</math>.'' The complex exponential function can be expressed as the series: :<math>\sum_{n=0}^{\infty}\frac{z^n}{n!}.</math> Any bounded subset is a subset of some disc <math>D_R</math> of radius <math>R,</math> centered on the origin in the [[complex plane]]. The Weierstrass M-test requires us to find an upper bound <math>M_n</math> on the terms of the series, with <math>M_n</math> independent of the position in the disc: :<math>\left| \frac{z^n}{n!} \right|\le M_n, \forall z\in D_R.</math> To do this, we notice :<math>\left| \frac{z^n}{n!}\right| \le \frac{|z|^n}{n!} \le \frac{R^n}{n!}</math> and take <math>M_n=\tfrac{R^n}{n!}.</math> If <math>\sum_{n=0}^{\infty}M_n</math> is convergent, then the M-test asserts that the original series is uniformly convergent. The [[ratio test]] can be used here: :<math>\lim_{n \to \infty}\frac{M_{n+1}}{M_n}=\lim_{n \to \infty}\frac{R^{n+1}}{R^n}\frac{n!}{(n+1)!}=\lim_{n \to \infty}\frac{R}{n+1}=0</math> which means the series over <math>M_n</math> is convergent. Thus the original series converges uniformly for all <math>z\in D_R,</math> and since <math>S\subset D_R</math>, the series is also uniformly convergent on <math>S.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)