Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Universal property
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Limits and colimits=== Categorical products are a particular kind of [[limit (category theory)|limit]] in category theory. One can generalize the above example to arbitrary limits and colimits. Let <math>\mathcal{J}</math> and <math>\mathcal{C}</math> be categories with <math>\mathcal{J}</math> a [[small category|small]] [[index category]] and let <math>\mathcal{C}^\mathcal{J}</math> be the corresponding [[functor category]]. The ''[[diagonal functor]]'' :<math>\Delta: \mathcal{C} \to \mathcal{C}^\mathcal{J}</math> is the functor that maps each object <math>N</math> in <math>\mathcal{C}</math> to the constant functor <math>\Delta(N): \mathcal{J} \to \mathcal{C}</math> (i.e. <math>\Delta(N)(X) = N</math> for each <math>X</math> in <math>\mathcal{J}</math> and <math>\Delta(N)(f) = 1_N</math> for each <math>f: X \to Y</math> in <math>\mathcal{J}</math>) and each morphism <math>f : N \to M</math> in <math>\mathcal{C}</math> to the natural transformation <math>\Delta(f):\Delta(N)\to\Delta(M)</math> in <math>\mathcal{C}^{\mathcal{J}}</math> defined as, for every object <math>X</math> of <math>\mathcal{J}</math>, the component <math display="block">\Delta(f)(X):\Delta(N)(X)\to\Delta(M)(X) = f:N\to M</math> at <math>X</math>. In other words, the natural transformation is the one defined by having constant component <math>f:N\to M</math> for every object of <math>\mathcal{J}</math>. Given a functor <math>F: \mathcal{J} \to \mathcal{C}</math> (thought of as an object in <math>\mathcal{C}^\mathcal{J}</math>), the ''limit'' of <math>F</math>, if it exists, is nothing but a universal morphism from <math>\Delta</math> to <math>F</math>. Dually, the ''colimit'' of <math>F</math> is a universal morphism from <math>F</math> to <math>\Delta</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)