Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Vandermonde matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations == If the columns of the Vandermonde matrix, instead of <math display="inline">1, x, x^2, ...</math>, are general polynomials <math display="inline">p_0, p_1, ..., p_n</math>, such that each one has degree <math display="inline">0, 1, ..., n</math>, that is, if <math>V = [p_i(x_j)]_{i, j \in 0:n}</math>, <math display="block">\det V(x_{0:n}) = \prod_k c_k \Delta(x)</math>where <math display="inline">c_0, ..., c_n</math> are the head coefficients of <math display="inline">p_0, p_1, ..., p_n</math>, and <math>\Delta(x) = \prod_{j>k} (x_j - x_k)</math> is the Vandermonde determinant. {{Math proof|title=Proof|proof= <math display="inline">\det V(x_{0:n})</math> is zero whenever <math display="inline">x_j = x_k</math>, and has degree <math display="inline">\frac 12 n(n+1)</math>, so it is a multiple of <math display="inline">\prod_{j>k} (x_j - x_k)</math>. To find the constant in front, simply calculate the coefficient of the term <math display="inline">x_0^0 \dots x_n^n</math>, which is <math display="inline">c_0 \dots c_n</math>. }} By multiplying with the Hermitian conjugate, we find that <math display="block"> \det \left[\sum_l p_j(z_l) p_k(z_l^*)\right] = \prod_k |c_k|^2 |\Delta(z)|^2 </math> {{Math theorem | math_statement = Fix <math display="inline">x</math>, and at the <math display="inline">y \to 0</math> limit, <math display="block">\det [e^{x_i y_j}] = \frac{1}{1! \dots n! (n+1)!}\Delta(x) \Delta(y) + o(\Delta(y))</math> uniformly for <math display="inline">y</math> | note = Tao 2012, page 251 }} {{hidden begin|style=width:100%|ta1=center|border=1px #aaa solid|title=Proof}} {{Math proof|title=Proof|proof= If any <math display="inline">x_j = x_k</math> or <math display="inline">y_j = y_k</math>, then the determinant is zero, so it has the form <math display="block">\det [e^{x_i y_j}] = C(x,y) \Delta(x) \Delta(y)</math> where <math display="inline">C(x,y)</math> is some power series in <math display="inline">x, y</math>. The left side is a sum of the form <math display="block"> \sum_{\sigma} (-1)^{|\sigma|} e^{\sum_i x_i y_{\sigma(i)}} </math> Expand them by Taylor expansion. For fixed <math display="inline">x</math>, the series is uniformly convergent in <math display="inline">y</math> in a neighborhood of zero. To find the constant term of <math display="inline">C(x, y)</math>, simply calculate the coefficient of the term <math display="inline">x_0^0 y_0^0 \dots x_n^n y_n^n</math>, which is <math display="inline">\frac{1}{1! \cdots (n+1)!}</math>. By the symmetry of the determinant, the next lowest-powered term of <math display="inline">C(x, y)</math> is of form <math display="inline">a(x_0y_0 + \dots + x_n y_n)</math>, which is <math display="inline">o(1)</math> as <math display="inline">y \to 0</math>. }}{{hidden end}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)