Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weakly interacting massive particle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Future of direct detection === [[File:WIMPsLZexperiment2023.png|frame|Upper limits for WIMP-nucleon elastic cross sections from selected experiments as reported by the LZ experiment in July 2023.]] The 2020s should see the emergence of several multi-tonne mass direct detection experiments, which will probe WIMP-nucleus cross sections orders of magnitude smaller than the current state-of-the-art sensitivity. Examples of such next-generation experiments are LUX-ZEPLIN (LZ) and XENONnT, which are multi-tonne liquid xenon experiments, followed by DARWIN, another proposed liquid xenon direct detection experiment of 50–100 tonnes.<ref>{{cite arXiv |eprint=1110.0103|last1= Malling|first1= D. C.|title= After LUX: The LZ Program |display-authors= etal |class= astro-ph.IM|year= 2011}}</ref><ref>{{cite journal |last1=Baudis |first1=Laura |title=DARWIN: dark matter WIMP search with noble liquids |journal=J. Phys. Conf. Ser. |date=2012 |volume=375 |issue=1 |page=012028 |doi=10.1088/1742-6596/375/1/012028 |arxiv=1201.2402|bibcode=2012JPhCS.375a2028B |s2cid=30885844 }}</ref> Such multi-tonne experiments will also face a new background in the form of neutrinos, which will limit their ability to probe the WIMP parameter space beyond a certain point, known as the neutrino floor. However, although its name may imply a hard limit, the neutrino floor represents the region of parameter space beyond which experimental sensitivity can only improve at best as the square root of exposure (the product of detector mass and running time).<ref>{{cite journal |last1=Billard |first1=J. |last2=Strigari |first2=L. |last3=Figueroa-Feliciano |first3=E. |date=2014 |title=Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments |journal=Physical Review D |volume=89 |issue=2 |page=023524 |arxiv=1307.5458 |bibcode=2014PhRvD..89b3524B |doi=10.1103/PhysRevD.89.023524 |s2cid=16208132}}</ref><ref>{{cite journal |last1=Davis |first1=Jonathan H. |title=Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor |journal=Journal of Cosmology and Astroparticle Physics |date=2015 |volume=1503 |issue=3 |page=012 |doi=10.1088/1475-7516/2015/03/012 |arxiv=1412.1475|bibcode = 2015JCAP...03..012D |s2cid=118596203 }}</ref> For WIMP masses below 10 GeV/''c''<sup>2</sup> the dominant source of neutrino background is from the [[Solar neutrino|Sun]], while for higher masses the background contains contributions from [[Neutrino#Atmospheric|atmospheric neutrino]]s and the [[diffuse supernova neutrino background]]. In December 2021, results from [[PandaX]] have found no signal in their data, with a lowest excluded cross section of {{val|3.8|e=-47|ul=cm2}} at 40 GeV with 90% confidence level.<ref name="Meng et al-2021">{{cite journal|last1=Meng|first1=Yue|last2=Wang|first2=Zhou|last3=Tao|first3=Yi|last4=Abdukerim|first4=Abdusalam|last5=Bo|first5=Zihao|last6=Chen|first6=Wei|last7=Chen|first7=Xun|last8=Chen|first8=Yunhua|last9=Cheng|first9=Chen|last10=Cheng|first10=Yunshan|last11=Cui|first11=Xiangyi|date=2021-12-23|title=Dark Matter Search Results from the PandaX-4T Commissioning Run|url=https://link.aps.org/doi/10.1103/PhysRevLett.127.261802|journal=Physical Review Letters|language=en|volume=127|issue=26|pages=261802|doi=10.1103/PhysRevLett.127.261802|pmid=35029500| arxiv=2107.13438 | bibcode=2021PhRvL.127z1802M |s2cid=236469421|issn=0031-9007}}</ref><ref name="Stephens-2021">{{cite journal|last=Stephens|first=Marric|date=2021-12-23|title=Tightening the Net on Two Kinds of Dark Matter|url=https://physics.aps.org/articles/v14/s164|journal=Physics|language=en|volume=14| doi=10.1103/Physics.14.s164 | bibcode=2021PhyOJ..14.s164S | s2cid=247277808 |doi-access=free}}</ref> In July 2023 the [[XENON#XENONnT|XENONnT]] and [[LZ experiment]] published the first results of their searches for WIMPs,<ref>{{cite journal |last=Day |first=Charles |date=2023-07-28 |title=The Search for WIMPs Continues |url=https://physics.aps.org/articles/v16/s106 |journal=Physics |volume=16 |pages=s106 |doi=10.1103/Physics.16.s106 |bibcode=2023PhyOJ..16.s106D |s2cid=260751963 |language=en |doi-access=free }}</ref> the first excluding cross sections above {{val|2.58|e=-47|u=cm2}} at 28 GeV with 90% confidence level<ref>{{cite journal |last1=XENON Collaboration |last2=Aprile |first2=E. |last3=Abe |first3=K. |last4=Agostini |first4=F. |last5=Ahmed Maouloud |first5=S. |last6=Althueser |first6=L. |last7=Andrieu |first7=B. |last8=Angelino |first8=E. |last9=Angevaare |first9=J. R. |last10=Antochi |first10=V. C. |last11=Antón Martin |first11=D. |last12=Arneodo |first12=F. |last13=Baudis |first13=L. |last14=Baxter |first14=A. L. |last15=Bazyk |first15=M. |date=2023-07-28 |title=First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment |url=https://link.aps.org/doi/10.1103/PhysRevLett.131.041003 |journal=Physical Review Letters |volume=131 |issue=4 |pages=041003 |doi=10.1103/PhysRevLett.131.041003|pmid=37566859 |arxiv=2303.14729 |bibcode=2023PhRvL.131d1003A |s2cid=257767449 }}</ref> and the second excluding cross sections above {{val|9.2|e=-48|u=cm2}} at 36 GeV with 90% confidence level.<ref>{{cite journal |last1=LUX-ZEPLIN Collaboration |last2=Aalbers |first2=J. |last3=Akerib |first3=D. S. |last4=Akerlof |first4=C. W. |last5=Al Musalhi |first5=A. K. |last6=Alder |first6=F. |last7=Alqahtani |first7=A. |last8=Alsum |first8=S. K. |last9=Amarasinghe |first9=C. S. |last10=Ames |first10=A. |last11=Anderson |first11=T. J. |last12=Angelides |first12=N. |last13=Araújo |first13=H. M. |last14=Armstrong |first14=J. E. |last15=Arthurs |first15=M. |date=2023-07-28 |title=First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment |url=https://link.aps.org/doi/10.1103/PhysRevLett.131.041002 |journal=Physical Review Letters |volume=131 |issue=4 |pages=041002 |doi=10.1103/PhysRevLett.131.041002|pmid=37566836 |arxiv=2207.03764 |bibcode=2023PhRvL.131d1002A |s2cid=250343331 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)