Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weibull distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Density function=== The form of the density function of the Weibull distribution changes drastically with the value of ''k''. For 0 < ''k'' < 1, the density function tends to β as ''x'' approaches zero from above and is strictly decreasing. For ''k'' = 1, the density function tends to 1/''Ξ»'' as ''x'' approaches zero from above and is strictly decreasing. For ''k'' > 1, the density function tends to zero as ''x'' approaches zero from above, increases until its mode and decreases after it. The density function has infinite negative slope at ''x'' = 0 if 0 < ''k'' < 1, infinite positive slope at ''x'' = 0 if 1 < ''k'' < 2 and null slope at ''x'' = 0 if ''k'' > 2. For ''k'' = 1 the density has a finite negative slope at ''x'' = 0. For ''k'' = 2 the density has a finite positive slope at ''x'' = 0. As ''k'' goes to infinity, the Weibull distribution converges to a [[Dirac delta distribution]] centered at ''x'' = Ξ». Moreover, the skewness and coefficient of variation depend only on the shape parameter. A generalization of the Weibull distribution is the [[hyperbolastic functions|hyperbolastic distribution of type III]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)