Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weierstrass elliptic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Modular discriminant=== [[Image:Discriminant real part.jpeg|thumb|The real part of the discriminant as a function of the square of the nome ''q'' on the unit disk.]] The ''modular discriminant'' <math>\Delta</math> is defined as the [[discriminant]] of the characteristic polynomial of the differential equation <math display="block"> \wp'^2(z) = 4\wp ^3(z)-g_2\wp(z)-g_3</math> as follows: <math display="block"> \Delta=g_2^3-27g_3^2. </math> The discriminant is a modular form of weight <math>12</math>. That is, under the action of the [[modular group]], it transforms as <math display="block">\Delta \left( \frac {a\tau+b} {c\tau+d}\right) = \left(c\tau+d\right)^{12} \Delta(\tau) </math> where <math>a,b,d,c\in\mathbb{Z}</math> with <math>ad-bc = 1</math>.<ref>{{Cite book|last=Apostol | first = Tom M.| url=https://www.worldcat.org/oclc/2121639|title=Modular functions and Dirichlet series in number theory| date=1976| publisher=Springer-Verlag|isbn=0-387-90185-X|location=New York|pages=50|oclc=2121639}}</ref> Note that <math>\Delta=(2\pi)^{12}\eta^{24}</math> where <math>\eta</math> is the [[Dedekind eta function]].<ref>{{Cite book| last=Chandrasekharan, K. (Komaravolu), 1920-|url=https://www.worldcat.org/oclc/12053023|title=Elliptic functions| date=1985| publisher=Springer-Verlag|isbn=0-387-15295-4|location=Berlin|pages=122|oclc=12053023}}</ref> For the Fourier coefficients of <math>\Delta</math>, see [[Ramanujan tau function]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)