Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weyl algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties of ''A<sub>n</sub>'' == Many properties of <math> A_1 </math> apply to <math> A_n </math> with essentially similar proofs, since the different dimensions commute. === General Leibniz rule === {{Main|General Leibniz rule}} {{Math theorem | name = Theorem | note = general Leibniz rule | math_statement = <math display="block"> p^k q^m = \sum_{l=0}^k \binom{k}{l} \frac{m!}{(m-l)!} q^{m-l} p^{k-l} = q^mp^k + mk q^{m-1}p^{k-1} + \cdots </math> }} {{Math proof|title=Proof|proof= Under the <math> p \mapsto x, q \mapsto \partial_x </math> representation, this equation is obtained by the general Leibniz rule. Since the general Leibniz rule is provable by algebraic manipulation, it holds for <math> A_1 </math> as well. }}In particular, <math display="inline">[q, q^m p^n] = -nq^mp^{n-1}</math> and <math display="inline">[p, q^mp^n] = mq^{m-1}p^n</math>. {{Math theorem | math_statement = The [[Center (ring theory)|center]] of Weyl algebra <math>A_n</math> is the underlying field of constants <math>F</math>. | name = Corollary }} {{Math proof|title=Proof|proof= If the commutator of <math>f</math> with either of <math>p, q</math> is zero, then by the previous statement, <math>f</math> has no monomial <math>p^nq^m</math> with <math>n > 0</math> or <math>m > 0</math>. }} === Degree === {{Math theorem | name = Theorem | note = | math_statement = <math> A_n </math> has a basis <math> \{q^m p^n : m, n \geq 0\} </math>.{{Sfn|Coutinho|1995|p=9|loc=Proposition 2.1}} }} {{Math proof|title=Proof|proof= By repeating the commutator relations, any monomial can be equated to a linear sum of these. It remains to check that these are linearly independent. This can be checked in the differential operator representation. For any linear sum <math> \sum_{m, n} c_{m,n} x^m \partial_x^n </math> with nonzero coefficients, group it in descending order: <math> p_N(x) \partial_x^N + p_{N-1}(x) \partial_x^{N-1} + \cdots + p_M(x) \partial_x^M </math>, where <math> p_M </math> is a nonzero polynomial. This operator applied to <math> x^M </math> results in <math> M! p_M(x) \neq 0 </math>. }} This allows <math> A_1 </math> to be a [[graded algebra]], where the degree of <math> \sum_{m, n} c_{m,n} q^m p^n </math> is <math> \max (m + n) </math> among its nonzero monomials. The degree is similarly defined for <math> A_n </math>. {{Math theorem | name = Theorem | math_statement = For <math>A_n</math>:{{sfn | Coutinho | 1995 | pp=14-15}} * <math> \deg(g + h) \leq \max(\deg(g), \deg(h)) </math> * <math> \deg([g, h]) \leq \deg(g) + \deg(h) - 2 </math> * <math> \deg(g h) = \deg(g) + \deg(h) </math> }} {{Math proof|title=Proof|proof= We prove it for <math>A_1</math>, as the <math>A_n</math> case is similar. The first relation is by definition. The second relation is by the general Leibniz rule. For the third relation, note that <math>\deg(g h) \leq \deg(g) + \deg(h)</math>, so it is sufficient to check that <math>gh</math> contains at least one nonzero monomial that has degree <math>\deg(g) + \deg(h)</math>. To find such a monomial, pick the one in <math>g</math> with the highest degree. If there are multiple such monomials, pick the one with the highest power in <math>q</math>. Similarly for <math>h</math>. These two monomials, when multiplied together, create a unique monomial among all monomials of <math>gh</math>, and so it remains nonzero. }} {{Math theorem | name = Theorem | math_statement = <math>A_n</math> is a [[Simple algebra|simple]] [[Domain (ring theory)|domain]].{{sfn | Coutinho | 1995 | p=16}} }} That is, it has no [[Ideal (ring theory)|two-sided nontrivial ideals]] and has no [[zero divisor]]s. {{Math proof|title=Proof|proof= Because <math>\deg(gh) = \deg(g) + \deg(h)</math>, it has no zero divisors. Suppose for contradiction that <math>I</math> is a nonzero two-sided ideal of <math>A_1</math>, with <math>I \neq A_1</math>. Pick a nonzero element <math>f \in I</math> with the lowest degree. If <math>f</math> contains some nonzero monomial of form <math>xx^m\partial^n = x^{m+1} \partial^n</math>, then <math display=block> [\partial, f] = \partial f - f \partial </math> contains a nonzero monomial of form <math display=block> \partial x^{m+1} \partial^n - x^{m+1} \partial^n \partial = (m+1) x^m \partial^n. </math> Thus <math>[\partial, f]</math> is nonzero, and has degree <math>\leq \deg(f)-1</math>. As <math>I</math> is a two-sided ideal, we have <math>[\partial, f] \in I</math>, which contradicts the minimality of <math>\deg(f)</math>. Similarly, if <math>f</math> contains some nonzero monomial of form <math>x^m\partial^n\partial</math>, then <math>[x, f] = xf - fx</math> is nonzero with lower degree. }} === Derivation === {{See|Derivation (differential algebra)}}{{Math theorem| | math_statement = The derivations of <math display="inline">A_n</math> are in bijection with the elements of <math display="inline">A_n</math> up to an additive scalar.{{sfn | Dirac | 1926 | pp=415β417}}}} That is, any derivation <math display="inline">D</math> is equal to <math display="inline">[\cdot, f]</math> for some <math display="inline">f \in A_n</math>; any <math display="inline">f\in A_n</math> yields a derivation <math display="inline">[\cdot, f]</math>; if <math display="inline">f, f' \in A_n</math> satisfies <math display="inline">[\cdot, f] = [\cdot, f']</math>, then <math display="inline">f - f' \in F</math>. The proof is similar to computing the potential function for a conservative polynomial vector field on the plane.{{sfn | Coutinho | 1997 | p=597}} {{Collapse top|title=Proof}} Since the commutator is a derivation in both of its entries, <math display="inline">[\cdot, f]</math> is a derivation for any <math display="inline">f\in A_n</math>. Uniqueness up to additive scalar is because the center of <math display="inline">A_n</math> is the ring of scalars. It remains to prove that any derivation is an inner derivation by induction on <math display="inline">n</math>. Base case: Let <math display="inline">D: A_1 \to A_1</math> be a linear map that is a derivation. We construct an element <math display="inline">r</math> such that <math display="inline">[p, r] = D(p), [q,r] = D(q)</math>. Since both <math display="inline">D</math> and <math display="inline">[\cdot, r]</math> are derivations, these two relations generate <math display="inline">[g, r] = D(g)</math> for all <math display="inline">g\in A_1</math>. Since <math display="inline">[p, q^mp^n] = mq^{m-1}p^n</math>, there exists an element <math display="inline">f = \sum_{m,n} c_{m,n} q^m p^n</math> such that <math display="block"> [p, f] = \sum_{m,n} m c_{m,n} q^m p^n = D(p) </math> <math display="block"> \begin{aligned} 0 &\stackrel{[p, q] = 1}{=} D([p, q]) \\ &\stackrel{D \text{ is a derivation}}{=} [p, D(q)] + [D(p), q] \\ &\stackrel{[p,f] = D(p)}{=} [p, D(q)] + [[p,f], q] \\ &\stackrel{\text{Jacobi identity}}{=} [p, D(q) - [q, f]] \end{aligned} </math> Thus, <math display="inline">D(q) = g(p) + [q, f]</math> for some polynomial <math display="inline">g</math>. Now, since <math display="inline">[q, q^m p^n] = -nq^mp^{n-1}</math>, there exists some polynomial <math display="inline">h(p)</math> such that <math display="inline">[q, h(p)] = g(p)</math>. Since <math display="inline">[p, h(p)] = 0</math>, <math display="inline">r = f + h(p)</math> is the desired element. For the induction step, similarly to the above calculation, there exists some element <math display="inline">r \in A_n</math> such that <math display="inline">[q_1, r] = D(q_1), [p_1, r] = D(p_1)</math>. Similar to the above calculation, <math display="block"> [x, D(y) - [y, r]] = 0 </math> for all <math display="inline">x \in \{p_1, q_1\}, y \in \{p_2, \dots, p_n, q_2, \dots, q_n\}</math>. Since <math display="inline">[x, D(y) - [y, r]]</math> is a derivation in both <math display="inline">x</math> and <math display="inline">y</math>, <math display="inline">[x, D(y) - [y, r]] = 0</math> for all <math display="inline">x\in \langle p_1, q_1\rangle</math> and all <math display="inline">y \in \langle p_2, \dots, p_n, q_2, \dots, q_n\rangle</math>. Here, <math display="inline">\langle \rangle</math> means the subalgebra generated by the elements. Thus, <math display="inline">\forall y \in \langle p_2, \dots, p_n, q_2, \dots, q_n\rangle</math>, <math display="block"> D(y) - [y, r] \in \langle p_2, \dots, p_n, q_2, \dots, q_n\rangle </math> Since <math display="inline">D - [\cdot, r]</math> is also a derivation, by induction, there exists <math display="inline">r' \in \langle p_2, \dots, p_n, q_2, \dots, q_n\rangle</math> such that <math display="inline">D(y) - [y, r] = [y, r']</math> for all <math display="inline">y \in \langle p_2, \dots, p_n, q_2, \dots, q_n\rangle</math>. Since <math display="inline">p_1, q_1</math> commutes with <math display="inline">\langle p_2, \dots, p_n, q_2, \dots, q_n\rangle</math>, we have <math display="inline">D(y) = [y, r + r']</math> for all <math>y \in \{p_1, \dots, p_n, q_1, \dots, q_n\}</math>, and so for all of <math>A_n</math>. {{Collapse bottom}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)