Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wiener process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Running maximum === The joint distribution of the running maximum <math display="block"> M_t = \max_{0 \leq s \leq t} W_s </math> and {{math|''W<sub>t</sub>''}} is <math display="block"> f_{M_t,W_t}(m,w) = \frac{2(2m - w)}{t\sqrt{2 \pi t}} e^{-\frac{(2m-w)^2}{2t}}, \qquad m \ge 0, w \leq m.</math> To get the unconditional distribution of <math>f_{M_t}</math>, integrate over {{math|ββ < ''w'' β€ ''m''}}: <math display="block">\begin{align} f_{M_t}(m) & = \int_{-\infty}^m f_{M_t,W_t}(m,w)\,dw = \int_{-\infty}^m \frac{2(2m - w)}{t\sqrt{2 \pi t}} e^{-\frac{(2m-w)^2}{2t}} \,dw \\[5pt] & = \sqrt{\frac{2}{\pi t}}e^{-\frac{m^2}{2t}}, \qquad m \ge 0, \end{align}</math> the probability density function of a [[Half-normal distribution]]. The expectation<ref>{{cite book|last=Shreve|first=Steven E| title=Stochastic Calculus for Finance II: Continuous Time Models|year=2008|publisher=Springer| isbn=978-0-387-40101-0| pages=114}}</ref> is <math display="block"> \operatorname{E}[M_t] = \int_0^\infty m f_{M_t}(m)\,dm = \int_0^\infty m \sqrt{\frac{2}{\pi t}}e^{-\frac{m^2}{2t}}\,dm = \sqrt{\frac{2t}{\pi}} </math> If at time <math>t</math> the Wiener process has a known value <math>W_{t}</math>, it is possible to calculate the conditional probability distribution of the maximum in interval <math>[0, t]</math> (cf. [[Probability distribution of extreme points of a Wiener stochastic process]]). The [[cumulative probability distribution function]] of the maximum value, [[Conditional probability|conditioned]] by the known value <math>W_t</math>, is: <math display="block">\, F_{M_{W_t}} (m) = \Pr \left( M_{W_t} = \max_{0 \leq s \leq t} W(s) \leq m \mid W(t) = W_t \right) = \ 1 -\ e^{-2\frac{m(m - W_t)}{t}}\ \, , \,\ \ m > \max(0,W_t)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)