Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Woodbury matrix identity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Derivations == === Direct proof === The formula can be proven by checking that <math>(A + UCV)</math> times its alleged inverse on the right side of the Woodbury identity gives the identity matrix: <math display="block">\begin{align} & \left(A + UCV \right) \left[ A^{-1} - A^{-1}U \left(C^{-1} + VA^{-1}U \right)^{-1} VA^{-1} \right] \\ ={} & \left\{ I - U\left(C^{-1} + VA^{-1}U \right)^{-1}VA^{-1} \right\} + \left\{ UCVA^{-1} - UCVA^{-1}U \left(C^{-1} + VA^{-1}U \right)^{-1} VA^{-1} \right\} \\ ={} & \left\{ I + UCVA^{-1} \right\} - \left\{ U\left(C^{-1} + VA^{-1}U \right)^{-1}VA^{-1} + UCVA^{-1}U \left(C^{-1} + VA^{-1}U \right)^{-1} VA^{-1} \right\} \\ ={} & I + UCVA^{-1} - \left(U + UCVA^{-1}U\right) \left(C^{-1} + VA^{-1}U\right)^{-1}VA^{-1} \\ ={} & I + UCVA^{-1} - UC \left(C^{-1} + VA^{-1}U\right) \left(C^{-1} + VA^{-1}U\right)^{-1}VA^{-1} \\ ={} & I + UCVA^{-1} - UCVA^{-1} \\ ={} & I. \end{align}</math> === Alternative proofs === {{collapse top|title=Algebraic proof }} First consider these useful identities, <math display="block">\begin{align} U + UCV A^{-1} U &= UC \left(C^{-1} + V A^{-1} U\right) = \left(A + UCV\right) A^{-1} U \\ \left(A + UCV\right)^{-1} U C &= A^{-1}U \left(C^{-1} + VA^{-1} U\right) ^{-1} \end{align} </math> Now, <math display="block">\begin{align} A^{-1} &= \left(A + UCV\right)^{-1}\left(A + UCV\right) A^{-1}\\ &= \left(A + UCV\right)^{-1}\left(I + UCVA^{-1}\right) \\ &= \left(A + UCV\right)^{-1} + \left(A + UCV\right)^{-1} UCVA^{-1} \\ &= \left(A + UCV\right)^{-1} + A^{-1} U \left(C^{-1} + VA^{-1}U \right)^{-1} VA^{-1}. \end{align}</math> {{collapse bottom}} {{collapse top|title=Derivation via blockwise elimination}} Deriving the Woodbury matrix identity is easily done by solving the following block matrix inversion problem <math display="block"> \begin{bmatrix} A & U \\ V & -C^{-1} \end{bmatrix}\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} I \\ 0 \end{bmatrix}. </math> Expanding, we can see that the above reduces to <math display="block">\begin{cases} AX + UY = I \\ VX - C^{-1}Y = 0\end{cases}</math> which is equivalent to <math>(A + UCV)X = I</math>. Eliminating the first equation, we find that <math>X = A^{-1}(I - UY)</math>, which can be substituted into the second to find <math>VA^{-1}(I - UY) = C^{-1}Y</math>. Expanding and rearranging, we have <math>VA^{-1} = \left(C^{-1} + VA^{-1}U\right)Y</math>, or <math>\left(C^{-1} + VA^{-1}U\right)^{-1}VA^{-1} = Y</math>. Finally, we substitute into our <math>AX + UY = I</math>, and we have <math>AX + U\left(C^{-1} + VA^{-1}U\right)^{-1}VA^{-1} = I</math>. Thus, :<math>(A + UCV)^{-1} = X = A^{-1} - A^{-1}U\left(C^{-1} + VA^{-1}U\right)^{-1}VA^{-1}.</math> We have derived the Woodbury matrix identity. {{collapse bottom}} {{collapse top|title=Derivation from LDU decomposition}} We start by the matrix <math display="block">\begin{bmatrix} A & U \\ V & C \end{bmatrix}</math> By eliminating the entry under the ''A'' (given that ''A'' is invertible) we get <math display="block">\begin{bmatrix} I & 0 \\ -VA^{-1} & I \end{bmatrix} \begin{bmatrix} A & U \\ V & C \end{bmatrix} = \begin{bmatrix} A & U \\ 0 & C - VA^{-1}U \end{bmatrix} </math> Likewise, eliminating the entry above ''C'' gives <math display="block">\begin{bmatrix} A & U \\ V & C \end{bmatrix} \begin{bmatrix} I & -A^{-1}U \\ 0 & I \end{bmatrix} = \begin{bmatrix} A & 0 \\ V & C-VA^{-1}U \end{bmatrix} </math> Now combining the above two, we get <math display="block"> \begin{bmatrix} I & 0 \\ -VA^{-1} & I \end{bmatrix} \begin{bmatrix} A & U \\ V & C \end{bmatrix}\begin{bmatrix} I & -A^{-1}U \\ 0 & I \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & C - VA^{-1}U \end{bmatrix} </math> Moving to the right side gives <math display="block">\begin{bmatrix} A & U \\ V & C \end{bmatrix} = \begin{bmatrix} I & 0 \\ VA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & C - VA^{-1}U \end{bmatrix} \begin{bmatrix} I & A^{-1}U \\ 0 & I \end{bmatrix}</math> which is the LDU decomposition of the block matrix into an upper triangular, diagonal, and lower triangular matrices. Now inverting both sides gives <math display="block">\begin{align} \begin{bmatrix} A & U \\ V & C \end{bmatrix}^{-1} &= \begin{bmatrix} I & A^{-1}U \\ 0 & I \end{bmatrix}^{-1} \begin{bmatrix} A & 0 \\ 0 & C - VA^{-1}U \end{bmatrix}^{-1} \begin{bmatrix} I & 0 \\ VA^{-1} & I \end{bmatrix}^{-1} \\[8pt] &= \begin{bmatrix} I & -A^{-1}U \\ 0 & I \end{bmatrix} \begin{bmatrix} A^{-1} & 0 \\ 0 & \left(C - VA^{-1}U\right)^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ -VA^{-1} & I \end{bmatrix} \\[8pt] &= \begin{bmatrix} A^{-1} + A^{-1}U\left(C - VA^{-1}U\right)^{-1}VA^{-1} & -A^{-1}U\left(C - VA^{-1}U\right)^{-1} \\ -\left(C - VA^{-1}U\right)^{-1}VA^{-1} & \left(C - VA^{-1}U\right)^{-1} \end{bmatrix} \qquad\mathrm{(1)} \end{align}</math> We could equally well have done it the other way (provided that ''C'' is invertible) i.e. <math display="block">\begin{bmatrix} A & U \\ V & C \end{bmatrix} = \begin{bmatrix} I & UC^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - UC^{-1}V & 0 \\ 0 & C \end{bmatrix} \begin{bmatrix} I & 0 \\ C^{-1}V & I\end{bmatrix}</math> Now again inverting both sides, <math display="block">\begin{align} \begin{bmatrix} A & U \\ V & C \end{bmatrix}^{-1} &= \begin{bmatrix} I & 0 \\ C^{-1}V & I\end{bmatrix}^{-1} \begin{bmatrix} A - UC^{-1}V & 0 \\ 0 & C \end{bmatrix}^{-1} \begin{bmatrix} I & UC^{-1} \\ 0 & I \end{bmatrix}^{-1} \\[8pt] &= \begin{bmatrix} I & 0 \\ -C^{-1}V & I\end{bmatrix} \begin{bmatrix} \left(A - UC^{-1}V\right)^{-1} & 0 \\ 0 & C^{-1} \end{bmatrix} \begin{bmatrix} I & -UC^{-1} \\ 0 & I \end{bmatrix} \\[8pt] &= \begin{bmatrix} \left(A - UC^{-1}V\right)^{-1} & -\left(A - UC^{-1}V\right)^{-1}UC^{-1} \\ -C^{-1}V\left(A - UC^{-1}V\right)^{-1} & C^{-1} + C^{-1}V\left(A - UC^{-1}V\right)^{-1}UC^{-1} \end{bmatrix} \qquad\mathrm{(2)} \end{align}</math> Now comparing elements (1, 1) of the RHS of (1) and (2) above gives the Woodbury formula <math display="block">\left(A - UC^{-1}V\right)^{-1} = A^{-1} + A^{-1}U\left(C - VA^{-1}U\right)^{-1}VA^{-1}.</math> {{collapse bottom}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)