Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Absolute convergence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof that any absolutely convergent series in a Banach space is convergent=== The above result can be easily generalized to every [[Banach space]] <math>(X, \|\,\cdot\,\|).</math> Let <math display="inline">\sum x_n</math> be an absolutely convergent series in <math>X.</math> As <math display=inline>\sum_{k=1}^n\|x_k\|</math> is a [[Cauchy sequence]] of real numbers, for any <math>\varepsilon > 0</math> and large enough [[natural number]]s <math>m > n</math> it holds: <math display=block>\left| \sum_{k=1}^m \|x_k\| - \sum_{k=1}^n \|x_k\| \right| = \sum_{k=n+1}^m \|x_k\| < \varepsilon.</math> By the triangle inequality for the norm {{math|Ηβ Η}}, one immediately gets: <math display=block>\left\|\sum_{k=1}^m x_k - \sum_{k=1}^n x_k\right\| = \left\|\sum_{k=n+1}^m x_k\right\| \leq \sum_{k=n+1}^m \|x_k\| < \varepsilon,</math> which means that <math display=inline>\sum_{k=1}^n x_k</math> is a Cauchy sequence in <math>X,</math> hence the series is convergent in <math>X.</math><ref>{{citation |last = Megginson|first = Robert E.|author-link = Robert Megginson |title = An introduction to Banach space theory |series = Graduate Texts in Mathematics |volume = 183 |publisher = Springer-Verlag |location = New York |year = 1998 |isbn = 0-387-98431-3 |page = 20 }} (Theorem 1.3.9)</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)