Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Adjoint representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example SL(2, R) === When computing the root system for one of the simplest cases of Lie Groups, the group SL(2, '''R''') of two dimensional matrices with determinant 1 consists of the set of matrices of the form: : <math>\begin{bmatrix} a & b\\ c & d\\ \end{bmatrix} </math> with ''a'', ''b'', ''c'', ''d'' real and ''ad'' − ''bc'' = 1. A maximal compact connected abelian Lie subgroup, or maximal torus ''T'', is given by the subset of all matrices of the form : <math>\begin{bmatrix} t_1 & 0\\ 0 & t_2\\ \end{bmatrix} = \begin{bmatrix} t_1 & 0\\ 0 & 1/t_1\\ \end{bmatrix} = \begin{bmatrix} \exp(\theta) & 0 \\ 0 & \exp(-\theta) \\ \end{bmatrix} </math> with <math> t_1 t_2 = 1 </math>. The Lie algebra of the maximal torus is the Cartan subalgebra consisting of the matrices : <math> \begin{bmatrix} \theta & 0\\ 0 & -\theta \\ \end{bmatrix} = \theta\begin{bmatrix} 1 & 0\\ 0 & 0 \\ \end{bmatrix}-\theta\begin{bmatrix} 0 & 0\\ 0 & 1 \\ \end{bmatrix} = \theta(e_1-e_2). </math> If we conjugate an element of SL(2, ''R'') by an element of the maximal torus we obtain : <math> \begin{bmatrix} t_1 & 0\\ 0 & 1/t_1\\ \end{bmatrix} \begin{bmatrix} a & b\\ c & d\\ \end{bmatrix} \begin{bmatrix} 1/t_1 & 0\\ 0 & t_1\\ \end{bmatrix} = \begin{bmatrix} a t_1 & b t_1 \\ c / t_1 & d / t_1\\ \end{bmatrix} \begin{bmatrix} 1 / t_1 & 0\\ 0 & t_1\\ \end{bmatrix} = \begin{bmatrix} a & b t_1^2\\ c t_1^{-2} & d\\ \end{bmatrix} </math> The matrices : <math> \begin{bmatrix} 1 & 0\\ 0 & 0\\ \end{bmatrix} \begin{bmatrix} 0 & 0\\ 0 & 1\\ \end{bmatrix} \begin{bmatrix} 0 & 1\\ 0 & 0\\ \end{bmatrix} \begin{bmatrix} 0 & 0\\ 1 & 0\\ \end{bmatrix} </math> are then 'eigenvectors' of the conjugation operation with eigenvalues <math>1,1,t_1^2, t_1^{-2}</math>. The function Ξ which gives <math>t_1^2</math> is a multiplicative character, or homomorphism from the group's torus to the underlying field R. The function Ξ» giving ΞΈ is a weight of the Lie Algebra with weight space given by the span of the matrices. It is satisfying to show the multiplicativity of the character and the linearity of the weight. It can further be proved that the differential of Ξ can be used to create a weight. It is also educational to consider the case of SL(3, '''R''').
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)