Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Almost complex manifold
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== References == {{reflist}} * {{Cite journal | doi=10.2307/1970051 | last1=Newlander | first1=August | last2=Nirenberg | first2=Louis | authorlink2=Louis Nirenberg | title=Complex analytic coordinates in almost complex manifolds | mr=0088770 | year=1957 | journal=[[Annals of Mathematics]] |series=Second Series | issn=0003-486X | volume=65 | issue=3 | pages=391–404 | jstor=1970051}} * {{cite book |last=Cannas da Silva |first=Ana | authorlink=Ana Cannas da Silva |title=Lectures on Symplectic Geometry |publisher=Springer |year=2001 |isbn=3-540-42195-5 }} Information on compatible triples, Kähler and Hermitian manifolds, etc. * {{cite book |authorlink=Raymond O. Wells Jr. |last=Wells |first=Raymond O. |title=Differential Analysis on Complex Manifolds |publisher=Springer-Verlag |location=New York |year=1980 |isbn=0-387-90419-0 }} Short section which introduces standard basic material. * {{Cite book | last1=Rubei | first1=Elena | title=Algebraic Geometry, a concise dictionary | publisher=Walter De Gruyter | location=Berlin/Boston | isbn=978-3-11-031622-3 | year=2014}} * {{cite journal |last1=Borel |first1=Armand | authorlink1=Armand Borel | last2=Serre |first2=Jean-Pierre| authorlink2 = Jean-Pierre Serre |title=Groupes de Lie et puissances réduites de Steenrod |journal=[[American Journal of Mathematics]] |volume=75 |issue=3 |year=1953 |pages=409–448 |jstor=2372495|mr=0058213|doi=10.2307/2372495 }} {{Manifolds}} [[Category:Smooth manifolds]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)