Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ambiguity function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Multistatic ambiguity functions== The ambiguity function can be extended to multistatic radars, which comprise multiple non-colocated transmitters and/or receivers (and can include [[bistatic radar]] as a special case). For these types of radar, the simple linear relationship between time and range that exists in the monostatic case no longer applies, and is instead dependent on the specific geometry β i.e. the relative location of transmitter(s), receiver(s) and target. Therefore, the multistatic ambiguity function is mostly usefully defined as a function of two- or three-dimensional position and velocity vectors for a given multistatic geometry and transmitted waveform. Just as the monostatic ambiguity function is naturally derived from the matched filter, the multistatic ambiguity function is derived from the corresponding optimal ''multistatic'' detector β i.e. that which maximizes the probability of detection given a fixed probability of false alarm through joint processing of the signals at all receivers. The nature of this detection algorithm depends on whether or not the target fluctuations observed by each bistatic pair within the multistatic system are mutually correlated. If so, the optimal detector performs phase coherent summation of received signals which can result in very high target location accuracy.<ref>T. Derham, S. Doughty, C. Baker, K. Woodbridge, [http://sites.google.com/site/thomasderham/Home/AmbiguityFunctionsforSpatiallyCoherentandIncoherentMultistaticRadar.pdf?attredirects=0 "Ambiguity Functions for Spatially Coherent and Incoherent Multistatic Radar,"] IEEE Trans. Aerospace and Electronic Systems (in press).</ref> If not, the optimal detector performs incoherent summation of received signals which gives diversity gain. Such systems are sometimes described as ''MIMO radars'' due to the information theoretic similarities to [[MIMO]] communication systems.<ref>G. San Antonio, D. Fuhrmann, F. Robey, "MIMO radar ambiguity functions," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 1 (2007).</ref> [[File:Ambiguity function plane.png|thumb|Ambiguity function plane]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)